154 research outputs found

    On the accretion disc properties in eclipsing dwarf nova EM Cyg

    Full text link
    In this paper we analyzed the behavior of the unusual dwarf nova EM Cyg using the data obtained in April-October, 2007 in Vyhorlat observatory (Slovak Republic) and in September, 2006 in Crimean Astrophysical Observatory (Ukraine). During our observations EM Cyg has shown outbursts in every 15-40 days. Because on the light curves of EM Cyg the partial eclipse of an accretion disc is observed we applied the eclipse mapping technique to reconstruct the temperature distribution in eclipsed parts of the disc. Calculations of the accretion rate in the system were made for the quiescent and the outburst states of activity for different distances.Comment: 6 pages, 3 figures, accepted in Astrophysics and Space Scienc

    Association Between Midlife Obesity and Kidney Function Trajectories: The Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    Rationale & Objective: Obesity has been related to risk for chronic kidney disease. However, the associations of different measures of midlife obesity with long-term kidney function trajectories and whether they differ by sex and race are unknown. Study Design: Observational study. Setting & Participants: 13,496 participants from the Atherosclerosis Risk in Communities (ARIC) Study. Predictors: Midlife obesity status as measured by body mass index (BMI), waist-to-hip ratio, and predicted percent fat at baseline. Outcomes: Estimated glomerular filtration rate (eGFR) calculated using serum creatinine level measured at 5 study visits, and incident kidney failure with replacement therapy (KFRT). Analytical Approach: Mixed models with random intercepts and random slopes for eGFR. Cox proportional hazards models for KFRT. Results: Baseline mean age was 54 years, median eGFR was 103 mL/min/1.73 m2, and median BMI was 27 kg/m2. Over 30 years of follow-up, midlife obesity measures were associated with eGFR decline in White and Black women but not consistently in men. Adjusted for age, center, smoking, and coronary heart disease, the differences in eGFR slope per 1-SD higher BMI, waist-to-hip ratio, and predicted percent fat were 0.09 (95% CI, −0.18 to 0.36), −0.25 (95% CI, −0.50 to 0.01), and −0.14 (95% CI, −0.41 to 0.13) mL/min/1.73 m2 per decade for White men; −0.91 (95% CI, −1.15 to −0.67), −0.82 (95% CI, −1.06 to −0.58), and −1.02 (95% CI, −1.26 to −0.78) mL/min/1.73 m2 per decade for White women; −0.70 (95% CI, −1.54 to 0.14), −1.60 (95% CI, −2.42 to −0.78), and −1.24 (95% CI, −2.08 to −0.40) mL/min/1.73 m2 per decade for Black men; and −1.24 (95% CI, −2.08 to −0.40), −1.50 (95% CI, −2.05 to −0.95), and −1.43 (95% CI, −2.00 to −0.86) mL/min/1.73 m2 per decade for Black women. Obesity indicators were independently associated with risk for KFRT for all sex-race groups except White men. Limitations: Loss to follow-up during 3 decades of follow-up with 5 eGFR assessments. Conclusions: Obesity status is a risk factor for future decline in kidney function and development of KFRT in Black and White women, with less consistent associations among men

    Tune in to your emotions: a robust personalized affective music player

    Get PDF
    The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listeners’ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application

    Companions of Stars: From Other Stars to Brown Dwarfs to Planets: The Discovery of the First Methane Brown Dwarf

    Full text link
    The discovery of the first methane brown dwarf provides a framework for describing the important advances in both fundamental physics and astrophysics that are due to the study of companions of stars. I present a few highlights of the history of this subject along with details of the discovery of the brown dwarf Gliese 229B. The nature of companions of stars is discussed with an attempt to avoid biases induced by anthropocentric nomenclature. With the newer types of remote reconnaissance of nearby stars and their systems of companions, an exciting and perhaps even more profound set of contributions to science is within reach in the near future. This includes an exploration of the diversity of planets in the universe and perhaps soon the first solid evidence for biological activity outside our Solar System.Comment: 31 pages, 13 figure

    A systematic review of physical activity promotion strategies

    Get PDF
    This article was first published in:British Journal of Sports Medicine:1996:30:84-89We have reviewed randomised controlled trials of physical activity promotion to provide recent and reliable information on the effectiveness of physical activity promotion. Computerised databases and references of references were searched. Experts were contacted and asked for information about existing work. Studies assessed were randomised controlled trials of healthy, free living, adult subjects, where exercise behaviour was the dependent variable. Eleven trials were identified. No United Kingdom based studies were found. Interventions that encourage walking and do not require attendance at a facility are most likely to lead to sustainable increases in overall physical activity. Brisk walking has the greatest potential for increasing overall activity levels of a sedentary population and meeting current public health recommendations. The small number of trials limits the strength of any conclusions and highlights the need for more research

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore