36 research outputs found

    Alien Registration- Norsworthy, William (Caribou, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/26095/thumbnail.jp

    Herbicide-resistant Grain Sorghum

    Get PDF
    A fluazifop-resistant sorghum cultivar designated ‘21534_ACCase-R’ and plants comprising a polynucleotide encoding the polypeptide of SEQ ID NO: 39 are disclosed herein. The present invention provides seeds, plants, and plant parts derived from sorghum cultivar ‘21534_ACCase-R’ and those including SEQ ID NO: 39. Further, it provides methods for producing a sorghum plant by crossing ‘21534_ACCase-R’ with itself or another sorghum variety. The invention also encompasses any sorghum seeds, plants, and plant parts produced by the methods disclosed herein, including those in which additional traits have been transferred into ‘21534_ACCase-R’ through the introduction of a transgene or by breeding ‘21534_ACCase-R’ with another sorghum cultivar

    Herbicide-resistant Grain Sorghum

    Get PDF
    A fluazifop-resistant sorghum cultivar designated ‘21534_ACCase-R’ and plants comprising a polynucleotide encoding the polypeptide of SEQ ID NO: 39 are disclosed herein. The present invention provides seeds, plants, and plant parts derived from sorghum cultivar ‘21534_ACCase-R’ and those including SEQ ID NO: 39. Further, it provides methods for producing a sorghum plant by crossing ‘21534_ACCase-R’ with itself or another sorghum variety. The invention also encompasses any sorghum seeds, plants, and plant parts produced by the methods disclosed herein, including those in which additional traits have been transferred into ‘21534_ACCase-R’ through the introduction of a transgene or by breeding ‘21534_ACCase-R’ with another sorghum cultivar

    Seedbank Persistence of Palmer Amaranth (\u3ci\u3eAmaranthus palmeri\u3c/i\u3e) and Waterhemp (\u3ci\u3eAmaranthus tuberculatus\u3c/i\u3e) across Diverse Geographical Regions in the United States

    Get PDF
    Knowledge of the effects of burial depth and burial duration on seed viability and, consequently, seedbank persistence of Palmer amaranth (Amaranthus palmeri S. Watson) and waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] ecotypes can be used for the development of efficient weed management programs. This is of particular interest, given the great fecundity of both species and, consequently, their high seedbank replenishment potential. Seeds of both species collected from five different locations across the United States were investigated in seven states (sites) with different soil and climatic conditions. Seeds were placed at two depths (0 and 15cm) for 3 yr. Each year, seeds were retrieved, and seed damage (shrunken, malformed, or broken) plus losses (deteriorated and futile germination) and viability were evaluated. Greater seed damage plus loss averaged across seed origin, burial depth, and year was recorded for lots tested at Illinois (51.3% and 51.8%) followed by Tennessee (40.5% and 45.1%) and Missouri (39.2% and 42%) for A. palmeri and A. tuberculatus, respectively. The site differences for seed persistence were probably due to higher volumetric water content at these sites. Rates of seed demise were directly proportional to burial depth (α=0.001), whereas the percentage of viable seeds recovered after 36 mo on the soil surface ranged from 4.1% to 4.3% compared with 5% to 5.3% at the 15-cm depth for A. palmeri and A. tuberculatus, respectively. Seed viability loss was greater in the seeds placed on the soil surface compared with the buried seeds. The greatest influences on seed viability were burial conditions and time and site-specific soil conditions, more so than geographical location. Thus, management of these weed species should focus on reducing seed shattering, enhancing seed removal from the soil surface, or adjusting tillage systems

    The silver bullet that wasn’t: Rapid agronomic weed adaptations to glyphosate in North America

    Get PDF
    The rapid adoption of glyphosate-resistant crops at the end of the 20th century caused a simplification of weed management that relied heavily on glyphosate for weed control. However, the effectiveness of glyphosate has diminished. A greater understanding of trends related to glyphosate use will shed new light on weed adaptation to a product that transformed global agriculture. Objectives were to (1) quantify the change in weed control efficacy from postemergence (POST) glyphosate use on troublesome weeds in corn and soybean and (2) determine the extent to which glyphosate preceded by a preemergence (PRE) improved the efficacy and consistency of weed control compared to glyphosate alone. Herbicide evaluation trials from 24 institutions across the United States of America and Canada from 1996 to 2021 were compiled into a single database. Two subsets were created; one with glyphosate applied POST, and the other with a PRE herbicide followed by glyphosate applied POST. Within each subset, mean and variance of control ratings for seven problem weed species were regressed over time for nine US states and one Canadian province. Mean control with POST glyphosate alone decreased over time while variability in control increased. Glyphosate preceded by a labeled PRE herbicide showed little change in mean control or variability in control over time. These results illustrate the rapid adaptation of agronomically important weed species to the paradigm-shifting product glyphosate. Including more diversity in weed management systems is essential to slowing weed adaptation and prolonging the usefulness of existing and future technologies

    Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 3: Drivers of seed shatter

    Get PDF
    Seed retention, and ultimately seed shatter, are extremely important for the efficacy of harvest weed seed control (HWSC) and are likely influenced by various agroecological and environmental factors. Field studies investigated seed-shattering phenology of 22 weed species across three soybean [Glycine max (L.) Merr.]-producing regions in the United States. We further evaluated the potential drivers of seed shatter in terms of weather conditions, growing degree days, and plant biomass. Based on the results, weather conditions had no consistent impact on weed seed shatter. However, there was a positive correlation between individual weed plant biomass and delayed weed seed-shattering rates during harvest. This work demonstrates that HWSC can potentially reduce weed seedbank inputs of plants that have escaped early-season management practices and retained seed through harvest. However, smaller individuals of plants within the same population that shatter seed before harvest pose a risk of escaping early-season management and HWSC

    Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 1: Broadleaf species

    Get PDF
    Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed-shatter phenology in 13 economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after physiological maturity at multiple sites spread across 14 states in the southern, northern, and mid-Atlantic United States. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus spp. seed shatter was low (0% to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2% to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than 10% of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC

    Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 2: Grass species

    Get PDF
    Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after maturity at multiple sites spread across 11 states in the southern, northern, and mid-Atlantic United States. From soybean maturity to 4 wk after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased moving north through the states. At soybean maturity, the percent of seed shatter ranged from 1% to 70%. That range had shifted to 5% to 100% (mean: 42%) by 25 d after soybean maturity. There were considerable differences in seed-shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output during certain years

    Alien Registration- Norsworthy, William (Caribou, Aroostook County)

    No full text
    https://digitalmaine.com/alien_docs/26095/thumbnail.jp
    corecore