16,169 research outputs found
Molecular dissection of I(A) in cortical pyramidal neurons reveals three distinct components encoded by Kv4.2, Kv4.3, and Kv1.4 alpha-subunits
The rapidly activating and inactivating voltage-gated K(+) (Kv) current, I(A), is broadly expressed in neurons and is a key regulator of action potential repolarization, repetitive firing, backpropagation (into dendrites) of action potentials, and responses to synaptic inputs. Interestingly, results from previous studies on a number of neuronal cell types, including hippocampal, cortical, and spinal neurons, suggest that macroscopic I(A) is composed of multiple components and that each component is likely encoded by distinct Kv channel alpha-subunits. The goals of the experiments presented here were to test this hypothesis and to determine the molecular identities of the Kv channel alpha-subunits that generate I(A) in cortical pyramidal neurons. Combining genetic disruption of individual Kv alpha-subunit genes with pharmacological approaches to block Kv currents selectively, the experiments here revealed that Kv1.4, Kv4.2, and Kv4.3 alpha-subunits encode distinct components of I(A) that together underlie the macroscopic I(A) in mouse (male and female) cortical pyramidal neurons. Recordings from neurons lacking both Kv4.2 and Kv4.3 (Kv4.2(-/-)/Kv4.3(-/-)) revealed that, although Kv1.4 encodes a minor component of I(A), the Kv1.4-encoded current was found in all the Kv4.2(-/-)/Kv4.3(-/-) cortical pyramidal neurons examined. Of the cortical pyramidal neurons lacking both Kv4.2 and Kv1.4, 90% expressed a Kv4.3-encoded I(A) larger in amplitude than the Kv1.4-encoded component. The experimental findings also demonstrate that the targeted deletion of the individual Kv alpha-subunits encoding components of I(A) results in electrical remodeling that is Kv alpha-subunit specific
The Life and Times of the Parkes-Tidbinbilla Interferometer
The Parkes-Tidbinbilla took advantage of a real-time radio-link connecting
the Parkes and Tidbinbilla antennas to form the world's longest real-time
interferometer. Built on a minuscule budget, it was an extraordinarily
successful instrument, generating some 24 journal papers including 3 Nature
papers, as well as facilitating the early development of the Australia
Telescope Compact Array. Here we describe its origins, construction, successes,
and life cycle, and discuss the future use of single-baseline interferometers
in the era of SKA and its pathfinders.Comment: Accepted by Journal of Astronomical History & Heritage. arXiv admin
note: substantial text overlap with arXiv:1210.098
Constraints on Association of Single-pulse Gamma-ray Bursts and Supernovae
We explore the hypothesis, similar to one recently suggested by Bloom and
colleagues, that some nearby supernovae are associated with smooth,
single-pulse gamma-ray bursts, possibly having no emission above ~ 300 keV. We
examine BATSE bursts with durations longer than 2 s, fitting those which can be
visually characterized as single-pulse events with a lognormal pulse model. The
fraction of events that can be reliably ascertained to be temporally and
spectrally similar to the exemplar, GRB 980425 - possibly associated with SN
1998bw - is 4/1573 or 0.25%. This fraction could be as high as 8/1573 (0.5%) if
the dimmest bursts are included. Approximately 2% of bursts are morphologically
similar to GRB 980425 but have emission above ~ 300 keV. A search of supernova
catalogs containing 630 detections during BATSE's lifetime reveals only one
burst (GRB 980425) within a 3-month time window and within the total 3-sigma
BATSE error radius that could be associated with a type Ib/c supernova. There
is no tendency for any subset of single-pulse GRBs to fall near the
Supergalactic Plane, whereas SNe of type Ib/c do show this tendency. Economy of
hypotheses leads us to conclude that nearby supernovae generally are not
related to smooth, single-pulse gamma-ray bursts.Comment: 25 pages, 5 figure
Quantum Operation Time Reversal
The dynamics of an open quantum system can be described by a quantum
operation, a linear, complete positive map of operators. Here, I exhibit a
compact expression for the time reversal of a quantum operation, which is
closely analogous to the time reversal of a classical Markov transition matrix.
Since open quantum dynamics are stochastic, and not, in general, deterministic,
the time reversal is not, in general, an inversion of the dynamics. Rather, the
system relaxes towards equilibrium in both the forward and reverse time
directions. The probability of a quantum trajectory and the conjugate, time
reversed trajectory are related by the heat exchanged with the environment.Comment: 4 page
Comment on "Self-Purification in Semiconductor Nanocrystals"
In a recent Letter [PRL 96, 226802 (2006)], Dalpian and Chelikowsky claimed
that formation energies of Mn impurities in CdSe nanocrystals increase as the
size of the nanocrystal decreases, and argued that this size dependence leads
to "self-purification" of small nanocrystals. They presented
density-functional-theory (DFT) calculations showing a strong size dependence
for Mn impurity formation energies, and proposed a general explanation. In this
Comment we show that several different DFT codes, pseudopotentials, and
exchange-correlation functionals give a markedly different result: We find no
such size dependence. More generally, we argue that formation energies are not
relevant to substitutional doping in most colloidally grown nanocrystals.Comment: 1 page, 1 figur
Compact Radio Cores in Seyfert Galaxies
We have observed a sample of 157 Seyfert galaxies with a 275 km baseline
radio interferometer to search for compact, high brightness temperature radio
emission from the active nucleus. We obtain the surprising result that compact
radio cores are much more common in Seyfert 2 than in Seyfert 1 galaxies, which
at first seems to be inconsistent with orientation unification schemes. We
propose a model, involving optical depth effects in the narrow-line region,
which can reconcile our result with the standard unified scheme. (Accepted for
publication in ApJ 1994 Sep 10)Comment: 21 pages and 7 figures, uuencoded tar-compressed postscript files,
ATP18
- …