473 research outputs found
Recommended from our members
The importance of incorporating technological advancements into the artificial eye process: a perspective commentary
Application of technology into healthcare has typically been targeted to high demand illnesses and treatments. However, with an increasing need to meet patient’s expectations combined with increased accessibility and reduced costs, smaller healthcare fields are starting to investigate its function and usability. Services have historically been led by skills and expertise, and recent developments are being seen by ocularists in the field of prosthetic eyes who acknowledge the potential benefit from technological advancement. Utilising the technologies recently investigated in maxillofacial prosthesis can start the evolutionary process where products are continually re-designed and re-developed to achieve excellent patient outcome and satisfaction levels
Recommended from our members
Scoping Review of the development of artificial eyes throughout the years
Losing an eye following trauma can lead to profound psychosocial difficulties making it imperative for the wearer to be fitted with an aesthetically pleasing custom-made artificial eye. Despite recent technological advancements, current design and manufacturing processes have remained unchanged in over 55 years. With the aim of portraying current knowledge regarding the development of artificial eyes in order to aid future development, a scooping review was conducted. Six online search engines were used: Scopus, PubMed, MedLine Complete, Web of Science, Science Direct and Google Scholar. Thirty-eight articles met the inclusion criteria and underwent numerical and thematic analysis with three thematic themes emerging. History and the current process of artificial eyes has been well documented, however, the impact of wearing artificial eyes is sparse. On-going research and development into the design and manufacturing processes of artificial eyes and the psychosocial impact of wearing an artificial eye is needed
Recommended from our members
Retinoblastoma: Identifying the Diagnostic Signs for Early Treatment
Retinoblastoma is a rare but significant cause of childhood eye cancer world-wide. The prognosis depends upon early diagnosis and treatment but also upon accurate classification of the tumours. Unilateral incidence is normally non-hereditary compared with bilateral incidence where secondary tumours are more common. Survivorship is much better for unilateral compared with bilateral and trilateral retinoblastoma. Early signs are important to detect and photography can assist in identifying no return of “red-eye” during flash photography and yellow appearance of the tumour. Treatment options are discussed together with new psycho-oncology approaches that address potential trauma in the survivor as well as in the family of the survivor
Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning
The observation of gravitational waves from compact binary coalescences by
LIGO and Virgo has begun a new era in astronomy. A critical challenge in making
detections is determining whether loud transient features in the data are
caused by gravitational waves or by instrumental or environmental sources. The
citizen-science project \emph{Gravity Spy} has been demonstrated as an
efficient infrastructure for classifying known types of noise transients
(glitches) through a combination of data analysis performed by both citizen
volunteers and machine learning. We present the next iteration of this project,
using similarity indices to empower citizen scientists to create large data
sets of unknown transients, which can then be used to facilitate supervised
machine-learning characterization. This new evolution aims to alleviate a
persistent challenge that plagues both citizen-science and instrumental
detector work: the ability to build large samples of relatively rare events.
Using two families of transient noise that appeared unexpectedly during LIGO's
second observing run (O2), we demonstrate the impact that the similarity
indices could have had on finding these new glitch types in the Gravity Spy
program
Recommended from our members
Questionnaire study to gain an insight into the manufacturing and fitting process of artificial eyes in children: an ocularist perspective
Purpose
To gain an insight into the manufacturing and fitting of artificial eyes in children and potential improvements to the process.
Method
An online qualitative survey was distributed to 39 ocularists/prosthetists in Europe and Canada. Participants were recruited through purposive sampling, specifically maximum variation sampling from the researcher’s contacts and an online search.
Results
The findings highlighted the current impression technique as being the most difficult yet most important part of the current process for both the ocularist and child patient. Negatively affecting obtaining a good impression, the child patients distress can be reduced by their parents by providing encouragement, reassurance, practicing the insertion and removal of the artificial eye and being matter of fact. Whilst improvements to the current process provided mixed views, the incorporation of current technology was perceived as not being able to meet the requirements to produce aesthetically pleasing artificial eyes.
Conclusion
The current artificial eye process can be seen as an interaction with its success being dependent on the child patient’s acceptance and adjustment which is dependent on the factors associated to the process. Investigation into the needs of the patient and whether technology can improve the process are the next steps in its advancement
Decomposability in formal conformance testing
We study the problem of deriving a specification for a third-party component, based on the specification of the system and the environment in which the component is supposed to reside. Particularly, we are interested in using component specifications for conformance testing of black-box components, using the theory of input-output conformance (ioco) testing. We propose and prove sufficient criteria for decompositionality, i.e., that components conforming to the derived specification will always compose to produce a correct system with respect to the system specification. We also study the criteria for strong decomposability, by which we can ensure that only those components conforming to the derived specification can lead to a correct system
Sprinting with an amputation: Some race-based lower-limb step observations.
BACKGROUND: T44 sprinting with an amputation is still in a state of relative infancy. Future scope for athletic training and prosthetic limb development may be assisted with a better understanding of information derived from T44 athletes when under race-based conditions. OBJECTIVES: To investigate the behaviour of step count and step frequency when under competitive conditions. STUDY DESIGN: The study comprises two elements: (1) a video-based analysis of race-based limb-to-limb symmetry and (2) a video-based analysis of race-based step count. METHODS: Video analysis of several major events from 1996-2012 are assessed for step count and step limb-to-limb symmetry characteristics. RESULTS: The video analysis highlights limb-to-limb imbalances greater than those indicated in the previous literature. A low step count is determined to be desirable for success in the 100-m event. CONCLUSION: Future analysis of athletes with a lower-limb amputation would be worthwhile when placed under race-based conditions as the limb-to-limb behaviour is more exaggerated than those seen in typical studies held within a laboratory setting. The within-event behaviour of step counts requires further investigation to establish where these take place or whether it is a cumulative step length issue. CLINICAL RELEVANCE: This article increases the understanding of the race-based behaviour of amputee athletes and provides more information to contribute to any discussions on the performance of lower-limb prostheses
Development of a 3D workspace Shoulder Assessment Tool Incorporating Electromyography and an Inertial Measurement Unit - A preliminary study
Traditional shoulder Range of Movement (ROM) measurement tools suffer from inaccuracy or from long experimental set-up times. Recently, it has been demonstrated that relatively low-cost wearable inertial measurement unit (IMU) sensors can overcome many of the limitations of traditional motion tracking systems.
The aim of this study is to develop and evaluate a single IMU combined with an Electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. Six volunteer subjects with healthy shoulders and one participant with a ‘frozen’ shoulder were recruited to the study. Arm movement in 3D space was plotted in spherical coordinates while the relative EMG intensity of any arm position is presented graphically.
The results showed that there was an average ROM surface area of 27291±538 deg2 among all six healthy individuals and a ROM surface area of 13571±308 deg2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles.
Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace
Monitoring the kinematics of Walking and Running Gait after total knee replacement using a generation of Kinematic Retaining prosthetic knee implant
Gait analysis has its role in rehabilitation medicine, orthopaedics, kinesiology, sports science, and other related fields of human locomotion. Use of gait analysis in the evaluation of the efficacy of joint replacement has increased over the last two decades due to the advancement of computer technology and the requirements of more quantitative data which can allow for better and more referenceable assessment of the performance of in service knees. This study was designed to investigate and monitor the kinematics of running and walking gait after a total unilateral or bilateral knee implant operation using the new-generation high-performance kinematic retaining prosthesis “Lima Corp Italy”. This type of post operation for running gait analysis had never been performed previously. It is designed to identify further kinematic data about the knee that may not be possible to observe using walking gait analysis alone. The kinematics of running gait in a group of 12 patients were monitored and results are presented here. The cost and resources required to do this was also questioned and the possibility of a more controlled image capture using cheaper mobile devices was examined
- …
