473 research outputs found

    Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning

    Get PDF
    The observation of gravitational waves from compact binary coalescences by LIGO and Virgo has begun a new era in astronomy. A critical challenge in making detections is determining whether loud transient features in the data are caused by gravitational waves or by instrumental or environmental sources. The citizen-science project \emph{Gravity Spy} has been demonstrated as an efficient infrastructure for classifying known types of noise transients (glitches) through a combination of data analysis performed by both citizen volunteers and machine learning. We present the next iteration of this project, using similarity indices to empower citizen scientists to create large data sets of unknown transients, which can then be used to facilitate supervised machine-learning characterization. This new evolution aims to alleviate a persistent challenge that plagues both citizen-science and instrumental detector work: the ability to build large samples of relatively rare events. Using two families of transient noise that appeared unexpectedly during LIGO's second observing run (O2), we demonstrate the impact that the similarity indices could have had on finding these new glitch types in the Gravity Spy program

    Decomposability in formal conformance testing

    Get PDF
    We study the problem of deriving a specification for a third-party component, based on the specification of the system and the environment in which the component is supposed to reside. Particularly, we are interested in using component specifications for conformance testing of black-box components, using the theory of input-output conformance (ioco) testing. We propose and prove sufficient criteria for decompositionality, i.e., that components conforming to the derived specification will always compose to produce a correct system with respect to the system specification. We also study the criteria for strong decomposability, by which we can ensure that only those components conforming to the derived specification can lead to a correct system

    Sprinting with an amputation: Some race-based lower-limb step observations.

    Get PDF
    BACKGROUND: T44 sprinting with an amputation is still in a state of relative infancy. Future scope for athletic training and prosthetic limb development may be assisted with a better understanding of information derived from T44 athletes when under race-based conditions. OBJECTIVES: To investigate the behaviour of step count and step frequency when under competitive conditions. STUDY DESIGN: The study comprises two elements: (1) a video-based analysis of race-based limb-to-limb symmetry and (2) a video-based analysis of race-based step count. METHODS: Video analysis of several major events from 1996-2012 are assessed for step count and step limb-to-limb symmetry characteristics. RESULTS: The video analysis highlights limb-to-limb imbalances greater than those indicated in the previous literature. A low step count is determined to be desirable for success in the 100-m event. CONCLUSION: Future analysis of athletes with a lower-limb amputation would be worthwhile when placed under race-based conditions as the limb-to-limb behaviour is more exaggerated than those seen in typical studies held within a laboratory setting. The within-event behaviour of step counts requires further investigation to establish where these take place or whether it is a cumulative step length issue. CLINICAL RELEVANCE: This article increases the understanding of the race-based behaviour of amputee athletes and provides more information to contribute to any discussions on the performance of lower-limb prostheses

    Development of a 3D workspace Shoulder Assessment Tool Incorporating Electromyography and an Inertial Measurement Unit - A preliminary study

    Get PDF
    Traditional shoulder Range of Movement (ROM) measurement tools suffer from inaccuracy or from long experimental set-up times. Recently, it has been demonstrated that relatively low-cost wearable inertial measurement unit (IMU) sensors can overcome many of the limitations of traditional motion tracking systems. The aim of this study is to develop and evaluate a single IMU combined with an Electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. Six volunteer subjects with healthy shoulders and one participant with a ‘frozen’ shoulder were recruited to the study. Arm movement in 3D space was plotted in spherical coordinates while the relative EMG intensity of any arm position is presented graphically. The results showed that there was an average ROM surface area of 27291±538 deg2 among all six healthy individuals and a ROM surface area of 13571±308 deg2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace

    Monitoring the kinematics of Walking and Running Gait after total knee replacement using a generation of Kinematic Retaining prosthetic knee implant

    Get PDF
    Gait analysis has its role in rehabilitation medicine, orthopaedics, kinesiology, sports science, and other related fields of human locomotion. Use of gait analysis in the evaluation of the efficacy of joint replacement has increased over the last two decades due to the advancement of computer technology and the requirements of more quantitative data which can allow for better and more referenceable assessment of the performance of in service knees. This study was designed to investigate and monitor the kinematics of running and walking gait after a total unilateral or bilateral knee implant operation using the new-generation high-performance kinematic retaining prosthesis “Lima Corp Italy”. This type of post operation for running gait analysis had never been performed previously. It is designed to identify further kinematic data about the knee that may not be possible to observe using walking gait analysis alone. The kinematics of running gait in a group of 12 patients were monitored and results are presented here. The cost and resources required to do this was also questioned and the possibility of a more controlled image capture using cheaper mobile devices was examined
    corecore