1,106 research outputs found

    Near Zone Navier-Stokes Analysis of Heavy Quark Jet Quenching in an N\mathcal{N} =4 SYM Plasma

    Full text link
    The near zone energy-momentum tensor of a supersonic heavy quark jet moving through a strongly-coupled N=4\mathcal{N}=4 SYM plasma is analyzed in terms of first-order Navier-Stokes hydrodynamics. It is shown that the hydrodynamical description of the near quark region worsens with increasing quark velocities. For realistic quark velocities, v=0.99v=0.99, the non-hydrodynamical region is located at a narrow band surrounding the quark with a width of approximately 3/πT3/\pi T in the direction parallel to the quark's motion and with a length of roughly 10/πT10/\pi T in the perpendicular direction. Our results can be interpreted as an indication of the presence of coherent Yang-Mills fields where deviation from hydrodynamics is at its maximum. In the region where hydrodynamics does provide a good description of the system's dynamics, the flow velocity is so small that all the nonlinear terms can be dropped. Our results, which are compatible with the thermalization timescales extracted from elliptic flow measurements, suggest that if AdS/CFT provides a good description of the RHIC system, the bulk of the quenched jet energy has more than enough time to locally thermalize and become encoded in the collective flow. The resulting flow pattern close to the quark, however, is shown to be considerably different than the superposition of Mach cones and diffusion wakes observed at large distances.Comment: new revised version, 11 figures, as published in PR

    Agrobiodiversidade como base para sistemas agrícolas sustentáveis para a agricultura familiar.

    Get PDF
    bitstream/item/78746/1/Documento-354.pd

    Absence of the London limit for the first-order phase transition to a color superconductor

    Full text link
    We study the effects of gauge-field fluctuations on the free energy of a homogeneous color superconductor in the color-flavor-locked (CFL) phase. Gluonic fluctuations induce a strong first-order phase transition, in contrast to electronic superconductors where this transition is weakly first order. The critical temperature for this transition is larger than the one corresponding to the diquark pairing instability. The physical reason is that the gluonic Meissner masses suppress long-wavelength fluctuations as compared to the normal conducting phase where gluons are massless, which stabilizes the superconducting phase. In weak coupling, we analytically compute the temperatures associated with the limits of metastability of the normal and superconducting phases, as well as the latent heat associated with the first-order phase transition. We then extrapolate our results to intermediate densities and numerically evaluate the temperature of the fluctuation-induced first-order phase transition, as well as the discontinuity of the diquark condensate at the critical point. We find that the London limit of magnetic interactions is absent in color superconductivity.Comment: 14 pages, 5 figure
    corecore