2,737 research outputs found

    Superconductive Phonon Anomalies in High-TcT_c Cuprates

    Full text link
    We consider the effects on phonon dynamics of spin-lattice coupling within the slave-boson mean-field treatment of the extended tt-JJ model. With no additional assumptions the theory is found to give a semi-quantitative account of the frequency and linewidth anomalies observed by Raman and neutron scattering for the 340cm−1cm^{-1} B1gB_{1g} phonon mode in YBa2Cu3O7YBa_2Cu_3O_7 at the superconducting transition. We discuss the applicability of the model to phonon modes of different symmetries, and report a connection to spin-gap features observed in underdoped YBCO. The results suggest the possibility of a unified understanding of the anomalies in transport, magnetic and lattice properties.Comment: heavily revised version of previous paper, including systematic treatment of effect of tt term, coupling constant derivation and calculation of phonon linewidth broadening. Revised Figs. 3 and 4 still only available by sending fax # to [email protected]

    Magnon Dispersion in the Field-Induced Magnetically Ordered Phase of TlCuCl3

    Full text link
    The magnetic properties of the interacting dimer system TlCuCl3 are investigated within a bond-operator formulation. The observed field-induced staggered magnetic order perpendicular to the field is described as a Bose condensation of magnons which are linear combinations of dimer singlet and triplet modes. This technique accounts for the magnetization curve and for the field dependence of the magnon dispersion curves observed by high-field neutron scattering measurements.Comment: 4 pages, 4 figures, REVTeX

    Squashing Models for Optical Measurements in Quantum Communication

    Full text link
    Measurements with photodetectors necessarily need to be described in the infinite dimensional Fock space of one or several modes. For some measurements a model has been postulated which describes the full mode measurement as a composition of a mapping (squashing) of the signal into a small dimensional Hilbert space followed by a specified target measurement. We present a formalism to investigate whether a given measurement pair of mode and target measurements can be connected by a squashing model. We show that the measurements used in the BB84 protocol do allow a squashing description, although the six-state protocol does not. As a result, security proofs for the BB84 protocol can be based on the assumption that the eavesdropper forwards at most one photon, while the same does not hold for the six-state protocol.Comment: 4 pages, 2 figures. Fixed a typographical error. Replaced the six-state protocol counter-example. Conclusions of the paper are unchange

    Evolution of the potential-energy surface of amorphous silicon

    Full text link
    The link between the energy surface of bulk systems and their dynamical properties is generally difficult to establish. Using the activation-relaxation technique (ART nouveau), we follow the change in the barrier distribution of a model of amorphous silicon as a function of the degree of relaxation. We find that while the barrier-height distribution, calculated from the initial minimum, is a unique function that depends only on the level of distribution, the reverse-barrier height distribution, calculated from the final state, is independent of the relaxation, following a different function. Moreover, the resulting gained or released energy distribution is a simple convolution of these two distributions indicating that the activation and relaxation parts of a the elementary relaxation mechanism are completely independent. This characterized energy landscape can be used to explain nano-calorimetry measurements.Comment: 5 pages, 4 figure

    Self-vacancies in Gallium Arsenide: an ab initio calculation

    Full text link
    We report here a reexamination of the static properties of vacancies in GaAs by means of first-principles density-functional calculations using localized basis sets. Our calculated formation energies yields results that are in good agreement with recent experimental and {\it ab-initio} calculation and provide a complete description of the relaxation geometry and energetic for various charge state of vacancies from both sublattices. Gallium vacancies are stable in the 0, -, -2, -3 charge state, but V_Ga^-3 remains the dominant charge state for intrinsic and n-type GaAs, confirming results from positron annihilation. Interestingly, Arsenic vacancies show two successive negative-U transitions making only +1, -1 and -3 charge states stable, while the intermediate defects are metastable. The second transition (-/-3) brings a resonant bond relaxation for V_As^-3 similar to the one identified for silicon and GaAs divacancies.Comment: 14 page

    Gallium self-interstitial relaxation in Gallium Arsenide: an {ab initio} characterization

    Full text link
    Ga interstitials in GaAs (IGaI_{Ga}) are studied using the local-orbital {ab-initio} code SIESTA in a supercell of {216+1} atoms. Starting from eight different initial configurations, we find five metastable structures: the two tetrahedral sites in addition to the 110-split[Ga−As]\mathrm{_{[Ga-As]}}, 111-split[Ga−As]\mathrm{_{[Ga-As]}}, and 100-split[Ga−Ga]\mathrm{_{[Ga-Ga]}}. Studying the competition between various configuration and charges of IGaI_{Ga}, we find that predominant gallium interstitials in GaAs are charged +1, neutral or at most -1 depending on doping conditions and prefer to occupy the tetrahedral configuration where it is surrounded by Ga atoms. Our results are in excellent agreement with recent experimental results concerning the dominant charge of IGaI_{Ga}, underlining the importance of finite size effects in the calculation of defects.Comment: v1) 18 pages, 5 figures, submitted to PRB (Latex preprint version) v2) 9 pages, 5 figures, reviewed version resubmitted to PRB (correction to equation 1, some changes and reformulations, minor grammatical and typo corrections, added reference

    Calculation of some determinants using the s-shifted factorial

    Full text link
    Several determinants with gamma functions as elements are evaluated. This kind of determinants are encountered in the computation of the probability density of the determinant of random matrices. The s-shifted factorial is defined as a generalization for non-negative integers of the power function, the rising factorial (or Pochammer's symbol) and the falling factorial. It is a special case of polynomial sequence of the binomial type studied in combinatorics theory. In terms of the gamma function, an extension is defined for negative integers and even complex values. Properties, mainly composition laws and binomial formulae, are given. They are used to evaluate families of generalized Vandermonde determinants with s-shifted factorials as elements, instead of power functions.Comment: 25 pages; added section 5 for some examples of application
    • …
    corecore