We report here a reexamination of the static properties of vacancies in GaAs
by means of first-principles density-functional calculations using localized
basis sets. Our calculated formation energies yields results that are in good
agreement with recent experimental and {\it ab-initio} calculation and provide
a complete description of the relaxation geometry and energetic for various
charge state of vacancies from both sublattices. Gallium vacancies are stable
in the 0, -, -2, -3 charge state, but V_Ga^-3 remains the dominant charge state
for intrinsic and n-type GaAs, confirming results from positron annihilation.
Interestingly, Arsenic vacancies show two successive negative-U transitions
making only +1, -1 and -3 charge states stable, while the intermediate defects
are metastable. The second transition (-/-3) brings a resonant bond relaxation
for V_As^-3 similar to the one identified for silicon and GaAs divacancies.Comment: 14 page