2,562 research outputs found

    Erosive Augmentation of Solid Propellant Burning Rate: Motor Size Scaling Effect

    Get PDF
    Two different independent variable forms, a difference form and a ratio form, were investigated for correlating the normalized magnitude of the measured erosive burning rate augmentation above the threshold in terms of the amount that the driving parameter (mass flux or Reynolds number) exceeds the threshold value for erosive augmentation at the test condition. The latter was calculated from the previously determined threshold correlation. Either variable form provided a correlation for each of the two motor size data bases individually. However, the data showed a motor size effect, supporting the general observation that the magnitude of erosive burning rate augmentation is reduced for larger rocket motors. For both independent variable forms, the required motor size scaling was attained by including the motor port radius raised to a power in the independent parameter. A boundary layer theory analysis confirmed the experimental finding, but showed that the magnitude of the scale effect is itself dependent upon scale, tending to diminish with increasing motor size

    Numerical Analysis of Solid Rocket Motor Instabilities With AP Composite Propellants

    Get PDF
    A non-steady model for the combustion of ammonium perchlorate composite propellants has been developed in order to be incorporated into a comprehensive gasdynamics model of solid rocket motor flow fields. The model including the heterogeneous combustion and turbulence mechanisms is applied to nonlinear combustion instability analyses. This paper describes the essential mechanisms and features of the model and discusses the methodology of non-steady calculations of the combustion instabilities of solid rocket motors

    Analytical Solution for Pressure-Coupled Combustion Response Functions of Composite Solid Propellants

    Get PDF
    This paper extends the classical analytical solution for small perturbation analysis of the pressure-coupled response of a homogeneous propellant to any two-component composite propellant. The solution obtained is general and can be used with any particular model for propellant combustion. As an example, the Cohen and Strand ammonium perchlorate propellant model for a single ammonium perchlorate particle size was used in this work. The results and their mechanistic significance are presented and discussed. It is shown that, for a two-component composite propellant, two forms of pressure exponents arise from the analysis. The significance of the second exponent is that it enables the composite propellant to be viewed as a homogeneous propellant with a frequency-dependent exponent via the coupling coefficients. It is found that the ammonium perchlorate is the main source of instability because of its condensed phase exothermicity and monopropellant flame kinetics. This will be a problem with energetic materials in general. The inert binder provides a stabilizing influence because of its endothermicity and the diffusion flame formed with the ammonium perchlorate. Effects of ammonium perchlorate particle size and pressure stem from the changing flame structure and its effect on burning rate

    Previously Unidentified Changes in Renal Cell Carcinoma Gene Expression Identified by Parametric Analysis of Microarray Data

    Get PDF
    BACKGROUND. Renal cell carcinoma is a common malignancy that often presents as a metastatic-disease for which there are no effective treatments. To gain insights into the mechanism of renal cell carcinogenesis, a number of genome-wide expression profiling studies have been performed. Surprisingly, there is very poor agreement among these studies as to which genes are differentially regulated. To better understand this lack of agreement we profiled renal cell tumor gene expression using genome-wide microarrays (45,000 probe sets) and compare our analysis to previous microarray studies. METHODS. We hybridized total RNA isolated from renal cell tumors and adjacent normal tissue to Affymetrix U133A and U133B arrays. We removed samples with technical defects and removed probesets that failed to exhibit sequence-specific hybridization in any of the samples. We detected differential gene expression in the resulting dataset with parametric methods and identified keywords that are overrepresented in the differentially expressed genes with the Fisher-exact test. RESULTS. We identify 1,234 genes that are more than three-fold changed in renal tumors by t-test, 800 of which have not been previously reported to be altered in renal cell tumors. Of the only 37 genes that have been identified as being differentially expressed in three or more of five previous microarray studies of renal tumor gene expression, our analysis finds 33 of these genes (89%). A key to the sensitivity and power of our analysis is filtering out defective samples and genes that are not reliably detected. CONCLUSIONS. The widespread use of sample-wise voting schemes for detecting differential expression that do not control for false positives likely account for the poor overlap among previous studies. Among the many genes we identified using parametric methods that were not previously reported as being differentially expressed in renal cell tumors are several oncogenes and tumor suppressor genes that likely play important roles in renal cell carcinogenesis. This highlights the need for rigorous statistical approaches in microarray studies.National Institutes of Healt

    Genome-wide sequence and functional analysis of early replicating DNA in normal human fibroblasts

    Get PDF
    BACKGROUND: The replication of mammalian genomic DNA during the S phase is a highly coordinated process that occurs in a programmed manner. Recent studies have begun to elucidate the pattern of replication timing on a genomic scale. Using a combination of experimental and computational techniques, we identified a genome-wide set of the earliest replicating sequences. This was accomplished by first creating a cosmid library containing DNA enriched in sequences that replicate early in the S phase of normal human fibroblasts. Clone ends were then sequenced and aligned to the human genome. RESULTS: By clustering adjacent or overlapping early replicating clones, we identified 1759 "islands" averaging 100 kb in length, allowing us to perform the most detailed analysis to date of DNA characteristics and genes contained within early replicating DNA. Islands are enriched in open chromatin, transcription related elements, and Alu repetitive elements, with an underrepresentation of LINE elements. In addition, we found a paucity of LTR retroposons, DNA transposon sequences, and an enrichment in all classes of tandem repeats, except for dinucleotides. CONCLUSION: An analysis of genes associated with islands revealed that nearly half of all genes in the WNT family, and a number of genes in the base excision repair pathway, including four of ten DNA glycosylases, were associated with island sequences. Also, we found an overrepresentation of members of apoptosis-associated genes in very early replicating sequences from both fibroblast and lymphoblastoid cells. These data suggest that there is a temporal pattern of replication for some functionally related genes

    Temperature-dependent quantum pair potentials and their application to dense partially ionized hydrogen plasmas

    Full text link
    Extending our previous work \cite{filinov-etal.jpa03ik} we present a detailed discussion of accuracy and practical applications of finite-temperature pseudopotentials for two-component Coulomb systems. Different pseudopotentials are discussed: i) the diagonal Kelbg potential, ii) the off-diagonal Kelbg potential iii) the {\em improved} diagonal Kelbg potential, iv) an effective potential obtained with the Feynman-Kleinert variational principle v) the ``exact'' quantum pair potential derived from the two-particle density matrix. For the {\em improved} diagonal Kelbg potential a simple temperature dependent fit is derived which accurately reproduces the ``exact'' pair potential in the whole temperature range. The derived pseudopotentials are then used in path integral Monte Carlo (PIMC) and molecular dynamics (MD) simulations to obtain thermodynamical properties of strongly coupled hydrogen. It is demonstrated that classical MD simulations with spin-dependent interaction potentials for the electrons allow for an accurate description of the internal energy of hydrogen in the difficult regime of partial ionization down to the temperatures of about 6000060 000 K. Finally, we point out an interesting relation between the quantum potentials and effective potentials used in density functional theory.Comment: 18 pages, 11 figure

    Tunneling spectra of submicron Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} intrinsic Josephson junctions: evolution from superconducting gap to pseudogap

    Full text link
    Tunneling spectra of near optimally doped, submicron Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} intrinsic Josephson junctions are presented, and examined in the region where the superconducting gap evolves into pseudogap. The spectra are analyzed using a self-energy model, proposed by Norman {\it et al.}, in which both quasiparticle scattering rate Γ\Gamma and pair decay rate ΓΔ\Gamma_{\Delta} are considered. The density of states derived from the model has the familiar Dynes' form with a simple replacement of Γ\Gamma by γ+\gamma_+ = (Γ\Gamma + ΓΔ\Gamma_{\Delta})/2. The γ+\gamma_+ parameter obtained from fitting the experimental spectra shows a roughly linear temperature dependence, which puts a strong constraint on the relation between Γ\Gamma and ΓΔ\Gamma_{\Delta}. We discuss and compare the Fermi arc behavior in the pseudogap phase from the tunneling and angle-resolved photoemission spectroscopy experiments. Our results indicate an excellent agreement between the two experiments, which is in favor of the precursor pairing view of the pseudogap.Comment: 7 pages, 6 figure

    Combustion Response of Ammonium Perchlorate

    Get PDF
    A modified Price–Boggs–Derr model is applied to compute the linear and nonlinear combustion response properties of monopropellant ammonium perchlorate (AP). The kinetics constants were changed to achieve good agreement with response function data as well as with steady-state data.The numerical method was first validated with the classical theory. Computations using the Levine and Culick boundary condition in the limit of small perturbations were compared with the exact mathematical solution for linear response, and the effect of perturbation amplitude was explored. Then, using the AP model for the boundary condition, various linear and nonlinear computations were performed. Supplemental mathematical analyses relate the AP model to the basic two parameters of the classical theory and show the key factors determining the nature of the combustion response

    Combustion response of ammonium perchlorate

    Get PDF
    A modified Price-Boggs-Derr model is applied to compute the linear and non-linear combustion response properties of monopropellant ammonium perchlorate. The kinetics constants were changed to achieve good agreement with response function data as well as with steady-state data. The numerical method was first validated by comparing computations using the Levine & Culick boundary condition in the limit of small perturbations with the exact mathematical solution for linear response. Then, using the AP model for the boundary condition, various linear and non-linear computations were performed. Supplemental mathematical analyses relate the AP model to the basic two parameters of the classical theory and show the key factors determining the nature of the combustion response
    • …
    corecore