21 research outputs found

    Imbalanced pattern completion vs. separation in cognitive disease: network simulations of synaptic pathologies predict a personalized therapeutics strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diverse Mouse genetic models of neurodevelopmental, neuropsychiatric, and neurodegenerative causes of impaired cognition exhibit at least four convergent points of synaptic malfunction: 1) Strength of long-term potentiation (LTP), 2) Strength of long-term depression (LTD), 3) Relative inhibition levels (Inhibition), and 4) Excitatory connectivity levels (Connectivity).</p> <p>Results</p> <p>To test the hypothesis that pathological increases or decreases in these synaptic properties could underlie imbalances at the level of basic neural network function, we explored each type of malfunction in a simulation of autoassociative memory. These network simulations revealed that one impact of impairments or excesses in each of these synaptic properties is to shift the trade-off between pattern separation and pattern completion performance during memory storage and recall. Each type of synaptic pathology either pushed the network balance towards intolerable error in pattern separation or intolerable error in pattern completion. Imbalances caused by pathological impairments or excesses in LTP, LTD, inhibition, or connectivity, could all be exacerbated, or rescued, by the simultaneous modulation of any of the other three synaptic properties.</p> <p>Conclusions</p> <p>Because appropriate modulation of any of the synaptic properties could help re-balance network function, regardless of the origins of the imbalance, we propose a new strategy of personalized cognitive therapeutics guided by assay of pattern completion vs. pattern separation function. Simulated examples and testable predictions of this theorized approach to cognitive therapeutics are presented.</p

    Surprised at All the Entropy: Hippocampal, Caudate and Midbrain Contributions to Learning from Prediction Errors

    Get PDF
    Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts

    Dominance of Objects over Context in a Mediotemporal Lobe Model of Schizophrenia

    Get PDF
    Background: A large body of evidence suggests impaired context processing in schizophrenia. Here we propose that this impairment arises from defective integration of mediotemporal ‘what ’ and ‘where ’ routes, carrying object and spatial information to the hippocampus. Methodology and Findings: We have previously shown, in a mediotemporal lobe (MTL) model, that the abnormal connectivity between MTL regions observed in schizophrenia can explain the episodic memory deficits associated with the disorder. Here we show that the same neuropathology leads to several context processing deficits observed in patients with schizophrenia: 1) failure to choose subordinate stimuli over dominant ones when the former fit the context, 2) decreased contextual constraints in memory retrieval, as reflected in increased false alarm rates and 3) impaired retrieval of contextual information in source monitoring. Model analyses show that these deficits occur because the ‘schizophrenic MTL ’ forms fragmented episodic representations, in which objects are overrepresented at the expense of spatial contextual information. Conclusions and Significance: These findings highlight the importance of MTL neuropathology in schizophrenia, demonstrating that it may underlie a broad spectrum of deficits, including context processing and memory impairments. It is argued that these processing deficits may contribute to central schizophrenia symptoms such as contextuall

    Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate

    Incremental learning of perceptual and conceptual representations and the puzzle of neural repetition suppression

    No full text

    A model for memory systems based on processing modes rather than consciousness

    No full text

    The hippocampus and memory: insights from spatial processing

    No full text
    The hippocampus appears to be crucial for long-term episodic memory, yet its precise role remains elusive. Electrophysiological studies in rodents offer a useful starting point for developing models of hippocampal processing in the spatial domain. Here we review one such model that points to an essential role for the hippocampus in the construction of mental images. We explain how this neural-level mechanistic account addresses some of the current controversies in the field, such as the role of the hippocampus in imagery and short-term memory, and discuss its broader implications for the neural bases of episodic memory

    Models and Theoretical Frameworks for Hippocampal and Entorhinal Cortex Function in Memory and Navigation

    No full text

    A model for memory systems based on processing modes rather than consciousness

    No full text
    corecore