734 research outputs found

    Identification of quantitative trait nucleotides and candidate genes for tuber yield and mosaic virus tolerance in an elite population of white guinea yam (Dioscorea rotundata) using genome-wide association scan

    Get PDF
    Open Access Journal; Published online: 22 Nov 2021Background Improvement of tuber yield and tolerance to viruses are priority objectives in white Guinea yam breeding programs. However, phenotypic selection for these traits is quite challenging due to phenotypic plasticity and cumbersome screening of phenotypic-induced variations. This study assessed quantitative trait nucleotides (QTNs) and the underlying candidate genes related to tuber yield per plant (TYP) and yam mosaic virus (YMV) tolerance in a panel of 406 white Guinea yam (Dioscorea rotundata) breeding lines using a genome-wide association study (GWAS). Results Population structure analysis using 5,581 SNPs differentiated the 406 genotypes into seven distinct sub-groups based delta K. Marker-trait association (MTA) analysis using the multi-locus linear model (mrMLM) identified seventeen QTN regions significant for TYP and five for YMV with various effects. The seveteen QTNs were detected on nine chromosomes, while the five QTNs were identified on five chromosomes. We identified variants responsible for predicting higher yield and low virus severity scores in the breeding panel through the marker-effect prediction. Gene annotation for the significant SNP loci identified several essential putative genes associated with the growth and development of tuber yield and those that code for tolerance to mosaic virus. Conclusion Application of different multi-locus models of GWAS identified 22 QTNs. Our results provide valuable insight for marker validation and deployment for tuber yield and mosaic virus tolerance in white yam breeding. The information on SNP variants and genes from the present study would fast-track the application of genomics-informed selection decisions in breeding white Guinea yam for rapid introgression of the targeted traits through markers validation

    Multiple-traits selection in White Guinea Yam (Dioscorea rotundata) genotypes

    Get PDF
    Open Access Journal; Published online: 07 Nov 2022Choosing superior parents with complementary trait values for hybridization and selecting variants with desired product profiles to release as a new cultivar are important breeding activities to progress genetic improvement in crops. This study assessed the genetic potential of 36 parental lines of white Guinea yam (Dioscorea rotundata) genotypes using multi-trait index-based factor analysis and ideotype design (FAI-BLUP). The experiment utilized 36 white yam genotypes laid out in a 6 × 6 triple lattice design with three replications and phenotyped for 18 agronomic and food quality traits. Findings showed significant differences among genotypes for all assessed traits. Fifteen traits had desired genetic gains, whereas stem diameter (−1.34%), and two starch property traits ((holding strength (−26.31%) and final paste viscosity (−3.33%)) had undesired selection gain. The FAI-BLUP index provided total genetic gains of 148.91% for traits desired for increase and –29.26% for those desired for decrease. Genotypes TDr08-21-2, TDr9518544, TDr9501932, TDr8902665 and Pampars were identified as top best candidate for simultaneous improvement of the measured traits in white yam breeding. The findings indicate the effectiveness of the FAI-BLUP index in identifying and selecting genotypes

    The anomaly of the oxygen bond-bending mode at 320 cm1^{-1} and the additional absorption peak in the c-axis infrared conductivity of underdoped YBa2_{2}Cu3_{3}O7δ_{7-\delta} single crystals revisited by ellipsometricmeasurements

    Full text link
    We have performed ellipsometric measurements of the far-infrared c-axis dielectric response of underdoped YBa2_{2}Cu3_{3}O7δ_{7-\delta} single crystals. Here we report a detailed analysis of the temperature-dependent renormalization of the oxygen bending phonon mode at 320 cm1^{-1} and the formation of the additional absorption peak around 400-500 cm1^{-1}. For a strongly underdoped YBa2_{2}Cu3_{3}O6.5_{6.5} crystal with Tc_{c}=52 K we find that, in agreement with previous reports based on conventional reflection measurements, the gradual onset of both features occurs well above Tc_{c} at T*\sim 150 K. Contrary to some of these reports, however, our data establish that the phonon anomaly and the formation of the additional peak exhibit very pronounced and steep changes right at Tc_{c}. For a less underdoped YBa2_{2}Cu3_{3}O6.75_{6.75} crystal with Tc_{c}=80 K, the onset temperature of the phonon anomaly almost coincides with Tc_{c}. Also in contrast to some previous reports, we find for both crystals that a sizeable fraction of the spectral weight of the additional absorption peak cannot be accounted for by the spectral-weight loss of the phonon modes but instead arises from a redistribution of the electronic continuum. Our ellipsometric data are consistent with a model where the bilayer cuprate compounds are treated as a superlattice of intra- and inter-bilayer Josephson-junctions

    Low-Temperature Specific Heat of an Extreme-Type-II Superconductor at High Magnetic Fields

    Full text link
    We present a detailed study of the quasiparticle contribution to the low-temperature specific heat of an extreme type-II superconductor at high magnetic fields. Within a T-matrix approximation for the self-energies in the mixed state of a homogeneous superconductor, the electronic specific heat is a linear function of temperature with a linear-TT coefficient γs(H)\gamma_s(H) being a nonlinear function of magnetic field HH. In the range of magnetic fields H\agt (0.15-0.2)H_{c2} where our theory is applicable, the calculated γs(H)\gamma_s(H) closely resembles the experimental data for the borocarbide superconductor YNi2_2B2_2C.Comment: 7 pages, 2 figures, to appear in Physical Review

    Doping dependence of the resonance peak and incommensuration in high-TcT_{c} superconductors

    Full text link
    The doping and frequency evolutions of the incommensurate spin response and the resonance mode are studied based on the scenario of the Fermi surface topology. We use the slave-boson mean-field approach to the ttJt-t^{\prime}-J model and including the antiferromagnetic fluctuation correction in the random-phase approximation. We find that the equality between the incommensurability and the hole concentration is reproduced at low frequencies in the underdoped regime. This equality observed in experiments was explained {\it only} based on the stripe model before. We also obtain the downward dispersion for the spin response and predict its doping dependence for further experimental testing, as well as a proportionality between the low-energy incommensurability and the resonance energy. Our results suggest a common origin for the incommensuration and the resonance peak based on the Fermi surface topology and the d-wave symmetry.Comment: 5 pages, 4 PS figure

    Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase

    Full text link
    We investigate the upper critical field in a stripe--phase and in the presence of a phenomenological pseudogap. Our results indicate that the formation of stripes affects the Landau orbits and results in an enhancement of Hc2H_{c2}. On the other hand, phenomenologically introduced pseudogap leads to a reduction of the upper critical field. This effect is of particular importance when the magnitude of the gap is of the order of the superconducting transition temperature. We have found that a suppression of the upper critical field takes place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure

    Convergence of energy-dependent incommensurate antiferromagnetic neutron scattering peaks to commensurate resonance in underdoped bilayer cuprates

    Full text link
    The recently discovered coexistence of incommensurate antiferromagnetic neutron scattering peaks and commensurate resonance in underdoped YBa2_2Cu3_3O6+x_{6+x} is calling for an explanation. Within the t-J model, the doping and energy dependence of the spin dynamics of the underdoped bilayer cuprates in the normal state is studied based on the fermion-spin theory by considering the bilayer interactions. Incommensurate peaks are found at [(1±δ)π,π][(1\pm\delta)\pi,\pi] and [π,(1±δ)π][\pi,(1\pm\delta)\pi] at low energies with δ\delta initially increasing with doping at low dopings and then saturating at higher dopings. These incommensurate peaks are suppressed, and the parameter δ\delta is reduced with increasing energy. Eventually it converges to the [π,π][\pi,\pi] resonance peak. Thus the recently observed coexistence is interpreted in terms of bilayer interactions.Comment: 15 pages, Revtex, five figures are included, accepted for publication in Phys. Rev.

    Influence of incommensurate dynamic charge-density wave scattering on the line shape of high-Tc_c cuprates

    Full text link
    We show that the spectral lineshape of superconducting La2x_{2-x}Srx_xCuO4_4 (LSCO) and Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi2212) can be well described by the coupling of the charge carriers to collective incommensurate charge-density wave (CDW) excitations. Our results imply that besides antiferromagnetic (AF) fluctuations also low-energy CDW modes can contribute to the observed dip-hump structure in the Bi2212 photoemission spectra. In case of underdoped LSCO we propose a possible interpretation of ARPES data in terms of a grid pattern of fluctuating stripes where the charge and spin scattering directions deviate by α=π/4\alpha=\pi/4. Within this scenario we find that the spectral intensity along (0,0)(π,π)(0,0) \to (\pi,\pi) is strongly suppressed consistent with recent photoemission experiments. In addition the incommensurate charge-density wave scattering leads to a significant broadening of the quasiparticle-peak around (π,0)(\pi,0).Comment: 5 pages, 4 figure
    corecore