121 research outputs found

    On the Degree of Dynamical Packing in the Kepler Multi-planet Systems

    Full text link
    Current planet formation theories rely on initially compact orbital configurations undergoing a (possibly extended) phase of giant impacts following the dispersal of the dissipative protoplanetary disk. The orbital architectures of observed mature exoplanet systems have likely been strongly sculpted by chaotic dynamics, instabilities, and giant impacts. One possible signature of systems continually reshaped by instabilities and mergers is their dynamical packing. Early Kepler data showed that many multi-planet systems are maximally packed - placing an additional planet between an observed pair would make the system unstable. However, this result relied on placing the inserted planet in the most optimistic configuration for stability (e.g., circular orbits). While this would be appropriate in an ordered and dissipative picture of planet formation (i.e. planets dampen into their most stable configurations), we argue that this best-case scenario for stability is rarely realized due to the strongly chaotic nature of planet formation. Consequently, the degree of dynamical packing in multi-planet systems under a realistic formation model is likely significantly higher than previously realized. We examine the full Kepler multi planet sample through this new lens, showing that ~60-95% of Kepler multi-planet systems are strongly packed and that dynamical packing increases with multiplicity. This may be a signature of dynamical sculpting or of undetected planets, showing that dynamical packing is an important metric that can be incorporated into planet formation modelling or when searching for unseen planets.Comment: 15 pages, 4 figures. Accepted for publication in MNRA

    Mapping the Outer Edge of the Young Stellar Cluster in the Galactic Center

    Full text link
    We present new near-infrared spectroscopic observations of the outer edges of the young stellar cluster around the supermassive black hole at the Galactic center. The observations show a break in the surface-density profile of young stars at approximately 13 arcsec (0.52 pc). These observations spectroscopically confirm previous suggestions of a break based on photometry. Using Gemini North's Near-Infrared Integral Field Spectrometer (NIFS) we are able to detect and separate early- and late-type stars with a 75% completeness at Ks = 15.5. We sample a region with radii between 7" to 23" (0.28 pc to 0.92 pc) from Sgr A*, and present new spectral classifications of 144 stars brighter than Ks = 15.5, where 140 stars are late-type (> 1 Gyr) and only four stars are early-type (young, 4-6 Myr). A broken power-law fit of the early-type surface-density matches well with our data and previously published values. The projected surface-density of late-type stars is also measured and found to be consistent with previous results. We find that the observed early-type surface-density profile is inconsistent with the theory of the young stars originating from a tightly bound infalling cluster, as no significant trail of young stars is found at radii above 13". We also note that either a simple disk instability criterion or a cloud-cloud collision could explain the location of the outer edge, though we lack information to make conclusive remarks on either alternative. If this break in surface-density represents an edge to the young stellar cluster it would set an important scale for the most recent episode of star formation at the Galactic center.Comment: 17 pages, 11 figures, 3 tables, ApJ accepte

    Migration then assembly: Formation of Neptune mass planets inside 1 AU

    Full text link
    We demonstrate that the observed distribution of `Hot Neptune'/`Super-Earth' systems is well reproduced by a model in which planet assembly occurs in situ, with no significant migration post-assembly. This is achieved only if the amount of mass in rocky material is ∼50\sim 50--100M⊕100 M_{\oplus} interior to 1 AU. Such a reservoir of material implies that significant radial migration of solid material takes place, and that it occur before the stage of final planet assembly. The model not only reproduces the general distribution of mass versus period, but also the detailed statistics of multiple planet systems in the sample. We furthermore demonstrate that cores of this size are also likely to meet the criterion to gravitationally capture gas from the nebula, although accretion is rapidly limited by the opening of gaps in the gas disk. If the mass growth is limited by this tidal truncation, then the scenario sketched here naturally produces Neptune-mass objects with substantial components of both rock and gas, as is observed. The quantitative expectations of this scenario are that most planets in the `Hot Neptune/Super-Earth' class inhabit multiple-planet systems, with characteristic orbital spacings. The model also provides a natural division into gas-rich (Hot Neptune) and gas-poor (Super-Earth) classes at fixed period. The dividing mass ranges from ∼3M⊕\sim 3 M_{\oplus} at 10 day orbital periods to ∼10M⊕\sim 10 M_{\oplus} at 100 day orbital periods. For orbital periods <10< 10 days, the division is less clear because a gas atmosphere may be significantly eroded by stellar radiation.Comment: 41 pages in preprint style, 15 figures, final version accepted to Ap

    Simulated Bars May Be Shorter but Are Not Slower Than Those Observed: TNG50 versus MaNGA

    Get PDF
    Galactic bars are prominent dynamical structures within disk galaxies whose size, formation time, strength, and pattern speed influence the dynamical evolution of their hosts' galaxies. Yet, their formation and evolution in a cosmological context is not well understood, as cosmological simulation studies have been limited by the classic trade-off between simulation volume and resolution. Here we analyze barred disk galaxies in the cosmological magnetohydrodynamical simulation TNG50 and quantitatively compare the distributions of bar size and pattern speed to those from MaNGA observations at z = 0. TNG50 galaxies are selected to match the stellar mass and size distributions of observed galaxies, to account for observational selection effects. We find that the high resolution of TNG50 yields bars with a wide range of pattern speeds (including those with ≥ 40 km s^{−1} kpc^{−1}) and a mean value of ∼ 36 km s^{−1} kpc larger than those from observations by only 6 km s^{−1} kpc^{−1}, in contrast with previous lower-resolution cosmological simulations that produced bars that were too slow. We find, however, that the bars in TNG50 are on average ∼35% shorter than observed, although this discrepancy may partly reflect the remaining inconsistencies in the simulation-data comparison. This leads to higher values of R = Rcorot/Rb{ \mathcal R }\,=\,{R}_{\mathrm{corot}}/{R}_{{\rm{b}}} in TNG50, but points to simulated bars being too short rather than too slow. After repeating the analysis on the lower-resolution run of the same simulation (with the same physical model), we qualitatively reproduce the results obtained in previous studies: this implies that, along with physical model variations, numerical resolution effects may explain the previously found slowness of simulated bars
    • …
    corecore