67 research outputs found

    Ninety years of coastal monitoring reveals baseline and extreme ocean temperatures are increasing off the Finnish coast

    Get PDF
    Long term coastal surface and sub-surface monitoring reveals that warm temperature extremes have intensified and cold extremes nearly vanished in the last decades, increasing baseline water temperature on the southwest coast of Finland. Global marine heatwave assessments often rely on satellite-derived sea surface temperature. However, these data have low accuracy in coastal areas, are unable to measure sub-surface temperatures and have only been available since the 1980s. Here, we analyse 90 years of in situ surface and bottom (30 m) water temperature data from a Finnish coastal monitoring site. Water temperatures were significantly higher between 1991-2020 than 1931-1960 and 1961-1990. We find strong differences between satellite-derived and in situ temperatures, with in situ temperatures being lower in autumn and winter and higher in spring. Measurements at the seafloor indicate marine heatwaves occurred during all seasons between 2016 and 2020, with intensities and durations exceeding previous records. Since the 1990s, we find an upward shift of the baseline temperature and increasingly frequent occurrence of temperatures previously considered as an extreme. Our findings highlight the importance of long-term in situ data and choice of climatological reference periods for assessing change.Peer reviewe

    Increasing densities of an invasive polychaete enhance bioturbation with variable effects on solute fluxes

    Get PDF
    Bioturbation is a key process affecting nutrient cycling in soft sediments. The invasive polychaete genus Marenzelleria spp. has established successfully throughout the Baltic Sea increasing species and functional diversity with possible density-dependent effects on bioturbation and associated solute fluxes. We tested the effects of increasing density of M. arctia, M. viridis and M. neglecta on bioturbation and solute fluxes in a laboratory experiment. Benthic communities in intact sediment cores were manipulated by adding increasing numbers of Marenzelleria spp. The results showed that Marenzelleria spp. in general enhanced all bioturbation metrics, but the effects on solute fluxes varied depending on the solute, on the density and species identity of Marenzelleria, and on the species and functional composition of the surrounding community. M. viridis and M. neglecta were more important in predicting variation in phosphate and silicate fluxes, whereas M. arctia had a larger effect on nitrogen cycling. The complex direct and indirect pathways indicate the importance of considering the whole community and not just species in isolation in the experimental studies. Including these interactions provides a way forward regarding our understanding of the complex ecosystem effects of invasive species.Peer reviewe

    Quantifying bioturbation across coastal seascapes : Habitat characteristics modify effects of macrofaunal communities

    Get PDF
    Bioturbation by benthic macrofauna communities plays a significant role in the setting and maintenance of important ecosystem functions and the delivery of associated ecosystem services. We investigated the context-dependence of bioturbation performed by natural benthic communities in the coastal northern Baltic Sea by quantifying three bioturbation metrics (particle mixing intensity, surface sediment reworking and bioturbation depth) across 18 sites ranging from cohesive muddy sediments to non-cohesive coarse sands, while accounting for the complexity of natural communities and habitat characteristics. We identified two distinct patterns of bioturbation; in fine sediments bioturbation rates were highly variable and in coarse sediments bioturbation rates were less variable and characterized by lower maximal values. Using distance-based linear multiple regressions, we found that 75.5% of the variance in bioturbation rates in fine sediment could be explained by key functional groups/species abundance and/or biomass (i.e. biomass of the gallery-diffusors and abundances of biodiffusors, surface modifiers, conveyors and gallery diffusors, respectively). In coarse sediment, 47.8% of the variance in bioturbation rates could be explained by a combination of environmental factors (grain size, organic matter content, buried plant material) and faunal functional groups, although fauna alone explained only 13% of this variance. Bioturbation in fine sediments was therefore more predictable based on the composition of benthic fauna. In coarse sediment, the bioturbation activities of benthic fauna were strongly modified by habitat characteristics (including the presence of buried plant material, sediment organic content and grain size) whereas in fine sediments this was not the case. Our results therefore highlight that variability in spatial patterns of bioturbation is a result of complex relationships between macrofauna community structure, sediment type and other habitat characteristics, likely modifying bioturbation performance of individual fauna.Peer reviewe

    Species and functional trait turnover in response to broad-scale change and an invasive species

    Get PDF
    While beta diversity has been implicated as a key factor in controlling resilience of communities to stressors, lack of long-term data sets has limited the study of temporal dynamics of beta diversity. With a time series at two sites in excess of 40yr, we investigated turnover of both species and functional traits in a system stressed by eutrophication and overfishing and undergoing climate change and invasion. The two sites, although located near to each other, differ in water depth (20 cf. 35m), but both sites have displayed increased abundances of an invasive polychaete since 1990. We tested two hypotheses related to the effect of an invasive species; that taxa richness and turnover would decrease, and trait richness would increase post invasion and that trait turnover would increase between arrival and establishment of the invasive. Generally, we observed different dynamics at the two sites and responses not consistent with our hypotheses. We detected an increase in taxa richness at both sites and an increase in taxa turnover and number of traits at one site only. Trait turnover was higher prior to the invasion, although again only at one site. Disjunctive responses between species and trait turnover occurred, with the invader contributing in a nonrandom fashion to trait turnover. The lack of strong, consistent responses to the arrival and establishment of the invasive, and the decrease in trait turnover, suggests that effects of invasives are not only system- and species-dependent, but also depend on community dynamics of the invaded site, in particular the assembly processes, and historical context.Peer reviewe

    Effects of Reduced pH on Macoma balthica Larvae from a System with Naturally Fluctuating pH-Dynamics

    Get PDF
    Ocean acidification is causing severe changes in the inorganic carbon balance of the oceans. The pH conditions predicted for the future oceans are, however, already regularly occurring in the Baltic Sea, and the system might thus work as an analogue for future ocean acidification scenarios. The characteristics of the Baltic Sea with low buffering capacity and large natural pH fluctuations, in combination with multiple other stressors, suggest that OA effects may be severe, but remain largely unexplored. A calcifying species potentially affected by low pH conditions is the bivalve Macoma balthica (L.). We investigated larval survival and development of M. balthica by exposing the larvae to a range of pH levels: 7.2, 7.4, 7.7 and 8.1 during 20 days in order to learn what the effects of reduced pH are on the larval biology and thus also potentially for the population dynamics of this key species. We found that even a slight pH decrease causes significant negative changes during the larval phase, both by slowing growth and by decreasing survival. The growth was slower in all reduced pH treatments compared to the control treatment. The size of 250 µm that is considered indicative to imminent settling in our system was reached by 22% of the larvae grown in control conditions after 20 days, whereas in all reduced pH treatments the size of 250 µm was reached by only 7–14%. The strong impact of ocean acidification on larvae is alarming as slowly growing individuals are exposed to higher predation risk in response to the longer time they are required to spend in the plankton, further decreasing the ecological competence of the species.Peer reviewe

    Context-dependent consequences of Marenzelleria spp. (Spionidae:Polychaeta) invasion for nutrient cycling in the Northern Baltic Sea

    Get PDF
    Marenzelleria spp. are among the most successful non-native benthic species in the Baltic Sea. These burrowing polychaetes dig deeper than most native Baltic species, performing previously lacking ecosystem functions. We examine evidence from experiments, field sampling and modelling that the introduction of Marenzelleria spp. affects nutrient cycling and biogeochemical processes at the sediment water interface. Over longer time scales, bioirrigation by Marenzelleria spp. has the potential to increase phosphorus retention in bottom deposits because of deeper oxygen penetration into sediments and formation of a deeper oxidized layer. In contrast, nitrogen fluxes from the sediment increase. As a consequence of a decline of the phosphate concentration and/or rising nitrogen/phosphorus ratio, some Northern Baltic ecosystems may experience improvement of the environment because of mitigation of eutrophication and harmful cyanobacteria blooms. Although it is difficult to unambiguously estimate the ecosystem-level consequences of invasion, in many cases it could be considered as positive due to increased structural and functional diversity. The long-term interactions with the native fauna still remain unknown, however, and in this paper we highlight the major knowledge gaps. (C) 2015 Institute of Oceanology of the Polish Academy of Sciences., Production and hosting by Elsevier Sp. z o.o.Peer reviewe

    The role of recurrent disturbances for ecosystem multifunctionality

    Get PDF
    Ecosystem functioning is threatened by an increasing number of anthropogenic stressors, creating a legacy of disturbance that undermines ecosystem resilience. However, few empirical studies have assessed to what extent an ecosystem can tolerate repeated disturbances and sustain its multiple functions. By inducing increasingly recurring hypoxic disturbances to a sedimentary ecosystem, we show that the majority of individual ecosystem functions experience gradual degradation patterns in response to repetitive pulse disturbances. The degradation in overall ecosystem functioning was, however, evident at an earlier stage than for single ecosystem functions and was induced after a short pulse of hypoxia (i.e., three days), which likely reduced ecosystem resistance to further hypoxic perturbations. The increasing number of repeated pulse disturbances gradually moved the system closer to a press response. In addition to the disturbance regime, the changes in benthic trait composition as well as habitat heterogeneity were important for explaining the variability in overall ecosystem functioning. Our results suggest that disturbance-induced responses across multiple ecosystem functions can serve as a warning signal for losses of the adaptive capacity of an ecosystem, and might at an early stage provide information to managers and policy makers when remediation efforts should be initiated.Peer reviewe

    Seasonal Variability in Benthic-Pelagic Coupling : Quantifying Organic Matter Inputs to the Seafloor and Benthic Macrofauna Using a Multi-Marker Approach

    Get PDF
    The exchange between the water column and the seafloor is a complex process, and is particularly intensive in the shallow waters of highly productive coastal areas, where the temporal variability in the inputs of pelagic organic matter will determine many aspects of the benthic community structure. However, few studies have focused on the seasonality of inputs of organic matter to the seafloor, and on the consequent dynamics and time scales of response of benthic consumers. We conducted a 1-year study where we repeatedly sampled multiple organic compounds traditionally used as markers to study the link between the pelagic organic matter inputs and the seafloor, and the potential response of benthic macrofauna to seasonal trends in phytoplankton biomass. We simultaneously quantified the particulate organic matter in the water column, the sinking material and different seafloor compartments, and analyzed it for pigments, organic carbon and nitrogen content, C/N ratio, and stable isotopes. Seafloor sediment was also analyzed for total lipids, and the dominant macrobenthic species for isotopic signatures. Results showed a major deposition of fresh organic matter during the spring bloom followed by more degraded organic matter inputs during the late summer bloom and even lower quality of the organic matter reaching the seafloor during winter. Strong positive relationships between water column and sedimentary pigments suggest that phytoplankton was the main source of carbon to the seafloor. The isotopic signatures of the dominant macrobenthic species suggest a fast response to the organic matter inputs from the water column. However, different species responded differently to the deposition of organic matter. Macoma balthica and Marenzelleria spp. fed on more reworked and degraded sedimentary material, while Monoporeia affinis showed a shift in the feeding habits according to its life stage, with adult individuals feeding on fresher material than juveniles did. Our study highlights the seasonal variability of the benthic-pelagic coupling and the utility of a multi-marker approach to follow the temporal inputs of organic matter from the water column to the seafloor and benthic organisms.Peer reviewe

    Changes in macrofauna bioturbation during repeated heatwaves mediate changes in biogeochemical cycling of nutrients

    Get PDF
    The increasing frequency and intensity of marine heatwaves (MHWs) observed worldwide entails changes in the structure and functioning of ecological communities. While severe and extreme heatwaves often have more destructive effects, the more subtle effects of moderate and strong heatwaves may nevertheless affect ecosystem functioning through complex, context-dependent linkages between different processes. Here we conducted a laboratory experiment to study the effects of repeated short-term, strong MHWs on macrofauna bioturbation and associated solute fluxes as a measure of ecosystem functioning using natural soft-sediment communities from the Baltic Sea. Our results showed changes in both bioturbation and biogeochemical cycling of nutrients following short-term, strong heatwaves, which seemed to contribute to an enhanced degradation of organic matter in the seafloor and an enhanced exchange of solutes across the sediment-water interface as well as increased sediment oxygen consumption. Following changes in these processes, the relative contribution of macrofauna and the environmental context to ecosystem functioning was altered. Our results highlight the potential of even shorter-term, strong MHWs of having system-wide impacts due to changes in the mechanistic process of bioturbation underpinning the biogeochemical cycling of nutrients. This study also highlights the need to measure a wide range of variables for a comprehensive understanding of the changes in functioning under disturbances, such as MHWs.Peer reviewe
    corecore