89 research outputs found

    S-100B and neuron-specific enolase as predictors of neurological outcome in patients after cardiac arrest and return of spontaneous circulation: a systematic review

    Get PDF
    INTRODUCTION: Neurological prognostic factors after cardiopulmonary resuscitation (CPR) in patients with cardiac arrest (CA) as early and accurately as possible are urgently needed to determine therapeutic strategies after successful CPR. In particular, serum levels of protein neuron-specific enolase (NSE) and S-100B are considered promising candidates for neurological predictors, and many investigations on the clinical usefulness of these markers have been published. However, the design adopted varied from study to study, making a systematic literature review extremely difficult. The present review focuses on the following three respects for the study design: definitions of outcome, value of specificity and time points of blood sampling. METHODS: A Medline search of literature published before August 2008 was performed using the following search terms: "NSE vs CA or CPR", "S100 vs CA or CPR". Publications examining the clinical usefulness of NSE or S-100B as a prognostic predictor in two outcome groups were reviewed. All publications met with inclusion criteria were classified into three groups with respect to the definitions of outcome; "dead or alive", "regained consciousness or remained comatose", and "return to independent daily life or not". The significance of differences between two outcome groups, cutoff values and predictive accuracy on each time points of blood sampling were investigated. RESULTS: A total of 54 papers were retrieved by the initial text search, and 24 were finally selected. In the three classified groups, most of the studies showed the significance of differences and concluded these biomarkers were useful for neurological predictor. However, in view of blood sampling points, the significance was not always detected. Nevertheless, only five studies involved uniform application of a blood sampling schedule with sampling intervals specified based on a set starting point. Specificity was not always set to 100%, therefore it is difficult to indiscriminately assess the cut-off values and its predictive accuracy of these biomarkers in this meta analysis. CONCLUSIONS: In such circumstances, the findings of the present study should aid future investigators in examining the clinical usefulness of these markers and determination of cut-off values

    Ultrathin GeSn p-channel MOSFETs grown directly on Si(111) substrate using solid phase epitaxy

    Get PDF
    Ultrathin GeSn layers with a thickness of 5.5 nm are fabricated on a Si(111) substrate by solid phase epitaxy (SPE) of amorphous GeSn layers with Sn concentrations up to 6.7%. We demonstrate well-behaved depletion-mode operation of GeSn p-channel metal–oxide–semiconductor field-effect transistors (pMOSFETs) with an on/off ratio of more than 1000 owing to the ultrathin GeSn channel layer (5.5 nm). It is found that the on current increases significantly with increasing Sn concentration at the same gate overdrive, attributed to an increasing substitutional Sn incorporation in Ge. The GeSn (6.7%) layer sample shows approximately 90% enhancement in hole mobility in comparison with a pure Ge channel on Si.status: publishe

    Alternative mRNA Splicing in Three Venom Families Underlying a Possible Production of Divergent Venom Proteins of the Habu Snake, Protobothrops flavoviridis

    Get PDF
    Snake venoms are complex mixtures of toxic proteins encoded by various gene families that function synergistically to incapacitate prey. A huge repertoire of snake venom genes and proteins have been reported, and alternative splicing is suggested to be involved in the production of divergent gene transcripts. However, a genome-wide survey of the transcript repertoire and the extent of alternative splicing still remains to be determined. In this study, the comprehensive analysis of transcriptomes in the venom gland was achieved by using PacBio sequencing. Extensive alternative splicing was observed in three venom protein gene families, metalloproteinase (MP), serine protease (SP), and vascular endothelial growth factors (VEGF). Eleven MP and SP genes and a VEGF gene are expressed as a total of 81, 61, and 8 transcript variants, respectively. In the MP gene family, individual genes are transcribed into different classes of MPs by alternative splicing. We also observed trans-splicing among the clustered SP genes. No other venom genes as well as non-venom counterpart genes exhibited alternative splicing. Our results thus indicate a potential contribution of mRNA alternative and trans-splicing in the production of highly variable transcripts of venom genes in the habu snake
    corecore