26 research outputs found

    The Cause of ‘Weak-Link’ Grain Boundary Behaviour in Polycrystalline Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10 Superconductors

    Get PDF
    The detrimental effects of grain boundaries have long been considered responsible for the low critical current densities (J_c) in high temperature superconductors. In this paper, we apply the quantitative approach used to identify the cause of the 'weak-link' grain boundary behaviour in YBa2Cu3O7 [1], to the Bi2Sr2CaCu2O8 and Bi2Sr2Ca2Cu3O10 materials that we have fabricated. Magnetic and transport measurements are used to characterise the grain and grain boundary properties of micro- and nanocrystalline material. Magnetisation measurements on all nanocrystalline materials show non-Bean-like behaviour and are consistent with surface pinning. Bi2Sr2CaCu2O8: Our microcrystalline material has very low grain boundary resistivity (ρ_GB), which is similar to that of the grains (ρ_G) such that ρ_GB≈ρ_G=2×〖10〗^(-5) Ωm (assuming a grain boundary thickness (d) of 1 nm) equivalent to an areal resistivity of ρ_G=2×〖10〗^(-14) Ωm^2. The transport J_c values are consistent with well-connected grains and very weak grain boundary pinning. However, unlike low temperature superconductors in which decreasing grain size increases the pinning along the grain boundary channels, any increase in pinning produced by making the grains in our Bi2Sr2CaCu2O8 materials nanocrystalline was completely offset by a decrease in the depairing current density of the grain boundaries caused by their high resistivity. We suggest a different approach to increasing J_c from that used in LTS materials, namely incorporating additional strong grain and grain boundary pinning sites in microcrystalline materials to produce high J_c values. Bi2Sr2Ca2Cu3O10: Both our micro- and nanocrystalline samples have ρ_GB/ρ_G of at least 10^3. This causes strong suppression of J_c across the grain boundaries, which explains the low transport J_c values we find experimentally. Our calculations show that low J_c in untextured polycrystalline Bi2Sr2Ca2Cu3O10 material is to be expected and the significant effort in the community in texturing samples and removing grain boundaries altogether is well-founded

    Anatomy-Specific Pancreatic Stump Management to Reduce the Risk of Pancreatic Fistula After Pancreatic Head Resection.

    Get PDF
    BACKGROUND: The anatomical status of the pancreatic remnant after a pancreatic head resection varies greatly among patients. The aim of the present study was to improve management of the pancreatic remnant for reducing pancreatic fistula after pancreatic head resection. METHODS: Ninety-five consecutive patients who underwent an end-to-side, duct-to-mucosa pancreaticojejunostomy after pancreatic head resection were included in the study. To approximate the pancreatic stump to the jejunum, the transfixing and interrupted suture techniques were used in 51 and 44 patients, respectively. We modified the interrupted suture technique according to the anatomical status of the pancreatic remnant, i.e., the shape of the pancreatic stump and the location of the pancreatic duct. RESULTS: There was no operative mortality in this study. Overall, 14 patients (15%) developed a clinically relevant pancreatic fistula. Certain anatomical features, including a small pancreatic duct, a soft, nonfibrotic pancreatic gland, and a pancreatic duct adjacent to the posterior cut edge, were significantly associated with pancreatic fistula. The fistula rate in the interrupted suture group was 7%, lower than that (22%) in the transfixing suture group (P = 0.036), and it was not influenced by pancreatic anatomy. Multivariate analysis identified a nonfibrotic pancreas (versus fibrotic pancreas; odds ratio [OR] 12.58, 95% CI 1.2-23.9; P = 0.001), a soft pancreas (versus hard pancreas; OR 4.67, CI 1.2-51.1; P = 0.006), and the transfixing suture technique (versus interrupted suture technique; OR 9.91, CI 1.7-57.5; P = 0.003) as significant predictors of clinically relevant pancreatic fistula. CONCLUSIONS: Pancreatic anastomosis modified according to the pancreatic anatomy is effective in reducing the risk of pancreatic fistula formation with end-to-side, duct-to-mucosa pancreaticojejunostomy after pancreatic head resection

    Smart mixing of viscous fluids

    No full text

    Review on Japanese-German-U.S. Cooperation on Laser-Ablation Propulsion

    Get PDF
    We report on an international cooperation between Nagoya University (NU), Japan and DLR Stuttgart, Germany on scaling issues in laser ablative propulsion. Lessons learned from collaborative work in the laboratory will be summarized with respect to the comparability of experimental methods and corresponding standardization issues. With the background of previous experimental research at the University of Alabama in Huntsville (UAH), experimental work with CO2 lasers in a moderate (NU) and high (DLR) pulse energy range on laser ablation of POM is presented. Profilometry results of target surfaces are compared with fluence distributions from beam propagation modeling. Ablation from flat targets is reported with respect to energy and area scaling and compared with results from ablative propulsion employing parabolic nozzles
    corecore