107 research outputs found

    Synthesis and Properties of Polysilsesquioxanes Having Ethoxysulfonyl Group as a Side Chain

    Get PDF
    Polysilsesquioxane having an ethoxysulfonyl group as a side chain was synthesized to prepare a proton-conductive film composed of a main chain of siloxane. At first, sodium 4-(2-methylallyloxy)benzenesulfonate was chlorinated with thionyl chloride. Next, hydrosilylation with trichlorosilane was carried out in the presence of platinum catalyst followed by treatment with ethanol. Finally, the hydrolytic polycondensation was carried out to provide poly(3-(4-ethoxysulfonylphenoxy)-2-methylpropyl)silsesquioxane. This polysilsesquioxane was heated to form a free-standing film that was brittle and brown in color

    Novel Extrapolation Method in the Monte Carlo Shell Model

    Get PDF
    We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model in order to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full pfpf-shell calculation of 56^{56}Ni, and the applicability of the method to a system beyond current limit of exact diagonalization is shown for the pfpf+g9/2g_{9/2}-shell calculation of 64^{64}Ge.Comment: 4 pages, 4figure

    Efficient computation of Hamiltonian matrix elements between non-orthogonal Slater determinants

    Get PDF
    We present an efficient numerical method for computing Hamiltonian matrix elements between non-orthogonal Slater determinants, focusing on the most time-consuming component of the calculation that involves a sparse array. In the usual case where many matrix elements should be calculated, this computation can be transformed into a multiplication of dense matrices. It is demonstrated that the present method based on the matrix-matrix multiplication attains \sim80% of the theoretical peak performance measured on systems equipped with modern microprocessors, a factor of 5-10 better than the normal method using indirectly indexed arrays to treat a sparse array. The reason for such different performances is discussed from the viewpoint of memory access.Comment: 8 pages, 3 figure

    Cycloaddition Reactions of 1-Aza- and 1,3-Diazaazulenium 1-Methylides

    Get PDF
    2-Chloro-, 2-methoxy-, and 2-amino-1-azaazulenium 1-methylides and 1,3-diazaazulenium 1-methylide were generated by the treatment of the corresponding 1-trimethylsilylmethyl-1-azaazulenium triflates and 1-trimethylsilylmethyl-1,3-diazaazulenium triflate with CsF; the triflates were prepared from the corresponding 1-azaazulenes and 1,3-diazaazulene with trimethylsilylmethyl triflate. The 1,3-dipolar cycloadditions of the 2-chloro-1-azazaazulenium 1-methylide, prepared in situ, with acetylenic esters gave 2a-azabenz[cd]azulene derivatives and 3a-azacyclopenta[a]naphthalene derivatives as major products, whereas 2-piperizino-1-azaazulenium 1-methylide underwent extended dipolar cycloaddition with acetylenic esters and afforded 9b-azacyclopent[a]azulene derivatives as major products

    Optical Properties of (162173) 1999 JU3: In Preparation for the JAXA Hayabusa 2 Sample Return Mission

    Full text link
    We investigated the magnitude-phase relation of (162173) 1999 JU3, a target asteroid for the JAXA Hayabusa 2 sample return mission. We initially employed the international Astronomical Union's H-G formalism but found that it fits less well using a single set of parameters. To improve the inadequate fit, we employed two photometric functions, the Shevchenko and Hapke functions. With the Shevchenko function, we found that the magnitude-phase relation exhibits linear behavior in a wide phase angle range (alpha = 5-75 deg) and shows weak nonlinear opposition brightening at alpha< 5 deg, providing a more reliable absolute magnitude of Hv = 19.25 +- 0.03. The phase slope (0.039 +- 0.001 mag/deg) and opposition effect amplitude (parameterized by the ratio of intensity at alpha=0.3 deg to that at alpha=5 deg, I(0.3)/I(5)=1.31+-0.05) are consistent with those of typical C-type asteroids. We also attempted to determine the parameters for the Hapke model, which are applicable for constructing the surface reflectance map with the Hayabusa 2 onboard cameras. Although we could not constrain the full set of Hapke parameters, we obtained possible values, w=0.041, g=-0.38, B0=1.43, and h=0.050, assuming a surface roughness parameter theta=20 deg. By combining our photometric study with a thermal model of the asteroid (Mueller et al. in preparation), we obtained a geometric albedo of pv = 0.047 +- 0.003, phase integral q = 0.32 +- 0.03, and Bond albedo AB = 0.014 +- 0.002, which are commensurate with the values for common C-type asteroids.Comment: 27 pages, 4 figure, accepted for publication in the Astrophysical Journa
    corecore