25 research outputs found
The recent distribution of lead in the Indian Ocean reflects the impact of regional emissions
Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of American 111 (2014): 15328–15331, doi:10.1073/pnas.1417370111Humans have injected lead (Pb) massively into the earth surface environment in a temporally and spatially evolving pattern. A significant fraction is transported by the atmosphere into the surface ocean where we can observe its transport by ocean currents and sinking particles. This study of the Indian Ocean documents high Pb concentrations in the northern and tropical surface waters, and extremely low Pb levels in the deep water. North of 20°S, dissolved Pb concentrations decrease from 42-82 pmol/Kg in surface waters to 1.5-3.3 pmol/Kg in deep waters. South of 20°S, surface water Pb concentrations decrease from 21 pmol/Kg at 31°S to 7 pmol/Kg at 62°S. This surface Pb concentration gradient reflects a southward decrease in anthropogenic Pb emissions. The upper waters of the north and central Indian Ocean have high Pb concentrations resulting from recent regional rapid industrialization and a late phase-out of leaded gasoline, and these concentrations are now higher than currently seen in the central North Pacific and North Atlantic Oceans. The Antarctic sector of the Indian Ocean shows very low concentrations due to limited regional anthropogenic Pb emissions, high scavenging rates, and rapid vertical mixing, but Pb still occurs at higher levels than would have existed centuries ago. Penetration of Pb into the northern and central Indian Ocean thermocline waters is minimized by limited ventilation. Pb concentrations in the deep Indian Ocean are comparable to the other oceans at the same latitude, and deep waters of the central Indian Ocean match the lowest observed oceanic Pb concentrations.Y. Echegoyen thanks the Spanish Ministry of Science and Innovation for a postdoctoral MEC-Fulbright grant. MIT laboratory expenses were supported by a grant from the Singapore National Research Foundation to the SMART-CENSAM project. Sample collection was supported by grants from the Steel Foundation for Environmental Protection Technology and from Grant-in-Aid of Scientific Research, the Ministry of Education, Culture, Sports, Science, and Technology of Japan
Behaviors of dissolved and particulate Co, Ni, Cu, Zn, Cd and Pb during a mesoscale Fe enrichment experiment (SEEDS II) in the western North Pacific
During mesoscale Fe enrichment (SEEDS II) in the western North Pacific ocean, we investigated dissolved and particulate Co, Ni, Cu, Zn, Cd and Pb in seawater from both field observation and shipboard bottle incubation of a natural phytoplankton assemblage with Fea ddition. Before the Fe enrichment, strong correlations between dissolved trace metals (Ni, Zn and Cd) and PO43-, and between particulate trace metals (Ni, Zn and Cd) and chlorophyll-a were obtained, suggesting that biogeochemical cycles mainly control the distributions of Ni, Zn and Cd in the study area. Average concentrations of dissolved Co, Ni, Cu, Zn, Cd and Pb in the surface mixed layer (0–20m) were 70 pM, 4.9, 2.1, 1.6, 0.48 nM and 52 pM, respectively, and those for the particulate species were 1.7 pM, 0.052, 0.094, 0.46, 0.037 nM and 5.2 pM, respectively. After Fe enrichment, chlorophyll-a increased 3 fold (up to 3 mg/L) during developing phases of the bloom (12 days). Mesozooplankton biomass also increased. Particulate Co, Ni, Cu and Cd inside the patch increase in the concentrations, but there were no analytically significant differences between concentrations inside and outside the patch. The bottle incubation with Fe addition (1 nM) showed an increase in chlorophyll-a (8.9 mg/L) and raised the particulate fraction up to 3–45% for all the metals, accompanying changes in Si/P, Zn/P and Cd/P. These results suggest that Fe addition lead to changes in biogeochemical cycling of trace metals. The comparison between the mesoscale Fe enrichment and the bottle incubation experiment suggests that although Fe was a limiting factor for the growth of phytoplankton, the enhanced biomass of mesozooplankton also limited the growth of phytoplankton and the transformation of trace metal speciation during the mesoscale Fe enrichment. Sediment trap data and the elemental ratios taken up by phytoplankton suggest that export loss was another reason that no detectable change in the concentrations of particulate trace metals was observed during the mesoscale Fe enrichment
Biosynthesis and Release of Methylarsenic Compounds During the Growth of Freshwater Algae
金沢大学工学部Arsenic transformations by freshwater algae have been studied under laboratory conditions. By the use of a new analytical method, we identified methylarsenic(III) species in the growth medium of green-alga Closterium aciculare incubated under axenic conditions. The arsenate concentration in the experimental medium began to decrease just after inoculation, and the levels of arsenite and methylarsenicals increased with the growth of C. aciculare. Initially, most of the arsenate was converted into arsenite, which peaked in concentration during the exponential phase. Methylarsenicals accumulated rapidly in the stationary phase. DMAA(V) production was enhanced when the ratio of phosphate to arsenate decreased in the culture medium. The levels of DMAA(V) increased continuously toward the end of the experiment. On the other hand, methylarsenic(III) species remained relatively steady during the stationary phase. Methylarsenic(III) species accounted for 0-35% of methylarsenicals. These results suggest that arsenite and methylarsenicals (containing methylarsenic(III) species) are supplied by phytoplankton, and serve as evidence of the origin of methylarsenic(III) species in natural waters. © 2001 Elsevier Science Ltd
Marine Chemistry of Zirconium, Hafnium, Niobium and Tantalum
Here, we present the first simultaneous preconcentration and determination of ultratrace (pmol/kg level) Zr, Hf, Nb, Ta and W in seawater, both in the form of dissolved and aciddissolvable species. 8-Hydroxyquinoline (8HQ) bonded covalently to a vinyl polymer resin, TSK-8HQ, was used in a chelating adsorbent column to concentrate the metals. The greatest advantage of this resin is its endurance to 5M HF, since this is an effective eluent for all five
metals. The analytes were successfully concentrated from 250 mL seawater with a 50-fold concentration factor through the column extraction and evaporation. The detection limit was
0.009–0.15 pmol/kg. The procedure blank determined using ultra pure water as a sample was 0.005–0.37 pmol/kg. The five metals were quantitatively recovered from seawater with good precision (2–4%). The effect of sample pH, sample flow rate, eluent composition and sample pretreatment were carefully studied. This method was applied to seawater
Strong elemental fractionation of Zr–Hf and Nb–Ta across the Pacific Ocean
Understanding the circulation of water masses in the world’s oceans is critical to our knowledge of the Earth’s climate system. Trace elements and their isotopes have been explored as tracers for the movement of water masses1. One type of candidate elements2 are the high-field-strength elements zirconium (Zr), hafnium (Hf), niobium (Nb) and tantalum (Ta). Here we measure the distributions of dissolved Zr, Hf, Nb and Ta along two meridional sections in the Pacific Ocean that extend from 65 to 10 S and from 10 to 50 N. We find that all four elements tend to be depleted in surface water. In the deep oceans, their concentrations rise along our transects from the Southern Ocean to the North Pacific Ocean, and show strong correlations with the concentration of silicate. These results indicate that terrigenous sources are important to the budget of Zr, Hf, Nb and Ta in sea water, compared with hydrothermal input. Unexpectedly, the weight ratios for Zr/Hf fall between 45 and 350 and those for Nb/Ta between 14 and 85 in Pacific sea water, higher than the ratios observed in fresh water, in the silicate Earth or in chondritic meteorites. We conclude that the fractionation of Zr/Hf and Nb/Ta ratios will be useful for tracing water masses in the ocean
Dissolved and Labile Particulate Zr, Hf, Nb, Ta, Mo and W in the Western North Pacific Ocean
Dissolved and labile particulate Zr, Hf, Nb, Ta, Mo and W were determined at stations K1 (51°N, 165°E), K2 (47°N, 160°E), KNOT (44°N, 155°E) and 35N (35°N, 160°E) in the western North Pacific Ocean. A portion of seawater for dissolved species (D) was passed through a 0.2 μm Nuclepore filter and acidified to pH 2.2 with HCl and HF. A portion of seawater for acid-dissolvable species (AD) was acidified without filtration. Labile particulate (LP) species is defined as AD minus D, which represents a chemically labile fraction of particulate species. D-Zr, Hf and Ta increase with depth, Nb shows a slight depletion in surface water, whereas Mo and W have a conservative vertical profile. The concentration range of D-Zr, Hf, Nb, Ta and W is 31–275, 0.14–0.95, 4.0–7.2, 0.08–0.29 and 40–51 pmol/kg, respectively, whereas that of Mo is 97–105 nmol/kg. LP-species of Zr, Hf and Ta account for 10–14% of AD in average and increase up to 25 % below 4000 m, whereas those for Mo and W are negligible. In contrast, LP-Nb shows maxima (up to 27%) in surface water. We also found that DZr/Hf, Nb/Ta and Mo/W mole ratios generally increase in the order continental crust < river water < coastal sea < open ocean
Stoichiometry among bioactive trace metals in seawater on the Bering Sea shelf
The distribution of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater was investigated on the Bering Sea shelf (56–64°N, 165–169°W) in September 2000. The unfiltered and filtered seawater samples were used for determination of total dissolvable (TD) and dissolved (D) metals (M), respectively. The TD-M concentrations were generally higher than in the Pacific Ocean. TD-Cd was highest in deep water of the outer shelf domain and dominated by dissolved species. The other TD-M were highest at stations close to the Yukon River delta and had higher fractions of labile particulate (LP) species that were obtained as the difference between TD-M and D-M. Dissolved Al, Ni, and Cu were characterized by input from the Yukon River. Dissolved Mn and Co showed maximums on the bottom of the coastal domain, suggesting influence of sedimentary Mn reduction. The correlations of D-Zn, D-Cd, and macronutrients indicated their distributions were largely controlled through uptake by microorganisms and remineralization from settling particles. All these three processes (river input, sedimentary reduction, and biogeochemical cycle) had an influence on the distribution of D-Fe. D-Pb was fairly uniformly distributed in the study area. The stoichiometry of D-M in the Bering Sea shelf showed enrichment of Co and Pb and depletion of Ni, Cu, Zn, and Cd compared with that in the North Pacific. The LP-M/LP-Al ratio revealed significant enrichment of the other eight metals relative to their crustal abundance, suggesting importance of formation of Fe–Mn oxides and adsorption of trace metals on the oxides
Precise Isotopic Analysis of Mo in Seawater Using Multiple Collector-Inductively Coupled Mass Spectrometry Coupled with a Chelating Resin Column Preconcentration Method
It is widely recognized that the natural isotopic variation of Mo can provide crucial information about the geochemical circulation of Mo, and the ocean is an important reservoir of Mo. To obtain precise isotopic data on Mo in seawater samples using multiple collector-inductively coupled plasma mass spectrometry (MC-ICPMS), we have developed a preconcentration technique using 8-hydroxyquinoline bonded covalently to a vinyl polymer resin (TSK-8HQ). By optimizing the procedure, Mo in seawater could be effectively separated from matrix elements such as alkali, alkaline earth, and transition metals. With this technique, even with a 50-fold enrichment factor, the changes in the 98Mo/95Mo ratio during preconcentration were smaller than twice the standard deviation (SD) in this study. Mass discrimination of Mo isotopes during the measurement was externally corrected for by normalizing 86Sr/88Sr to 0.1194 using an exponential law. We evaluated δ98/95Mo to a precision of 0.08 ‰ (2 SD); this value was found to be less than one-third of previous reported values. Moreover, we were able to determine an accurate ratio