5,241 research outputs found

    AiResearch QCGAT engine performance and emissions tests

    Get PDF
    Results of aerodynamic performance and emission tests, conducted on a specially designed QCGAT engine in the 17,793-N (4,000 lb) thrust class, are presented. Performance of the AiResearch QCGAT engine was excellent throughout all testing. No serious mechanical malfunctions were encountered, and no significant test time was lost due to engine-related problems. Emissions were drastically reduced over similar engines, and the engine exhibited good smoke performance

    Government Contracts and Fair Employment Practices

    Get PDF

    Colloid propulsion method and apparatus Patent

    Get PDF
    Colloidal particle generator for electrostatic engine for propelling space vehicle

    Advanced liner-cooling techniques for gas turbine combustors

    Get PDF
    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy)

    Particulate exhaust emissions from an experimental combustor

    Get PDF
    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel

    Small gas-turbine combustor study: Fuel injector evaluation

    Get PDF
    As part of a continuing effort at the Lewis Research Center to improve performance, emissions, and reliability of turbine machinery, an investigation of fuel injection technique and effect of fuel type on small gas turbine combustors was undertaken. Performance and pollutant emission levels are documented over a range of simulated flight conditions for a reverse flow combustor configuration using simplex pressure-atomizing, spill-flow return, and splash cone airblast injectors. A parametric evaluation of the effect of increased combustor loading with each of the fuel injector types was obtained. Jet A and an experimental referee broad specification fuel were used to determine the effect of fuel type

    Effect of broad properties fuel on injector performance in a reverse flow combustor

    Get PDF
    The effect of fuel type on the performance of various fuel injectors was investigated in a reverse flow combustor. Combustor performance and emissions are documented for simplex pressure atomizing, spill flow, and airblast fuel injectors using a broad properties fuel and compared with performance using Jet A fuel. Test conditions simulated a range of flight conditions including sea level take off, low and high altitude cruise, as well as a parametric evaluation of the effect of increased combustor loading. The baseline simplex injector produced higher emission levels with corresponding lower combustion efficiency with the broad properties fuel. There was little or not loss in performance by the two advanced concept injectors with the broad properties fuel. The airblast injector proved to be especially insensitive to fuel type

    Small gas turbine combustor study: Fuel injector performance in a transpiration-cooled liner

    Get PDF
    The effect of fuel injection technique on the performance of an advanced reverse flow combustor liner constructed of Lamilloy (a multilaminate transpiration type material) was determined. Performance and emission levels are documented over a range of simulated flight conditions using simplex pressure atomizing, spill return, and splash cone airblast injectors. A parametric evaluation of the effect of increased combustor loading with each of the fuel injector types is obtained
    corecore