138 research outputs found

    A spiral-like disk of ionized gas in IC 1459: Signature of a merging collision

    Get PDF
    The authors report the discovery of a large (15 kpc diameter) H alpha + (NII) emission-line disk in the elliptical galaxy IC 1459, showing weak spiral structure. The line flux peaks strongly at the nucleus and is more concentrated than the stellar continuum. The major axis of the disk of ionized gas coincides with that of the stellar body of the galaxy. The mass of the ionized gas is estimated to be approx. 1 times 10 (exp 5) solar mass, less than 1 percent of the total mass of gas present in IC 1459. The total gas mass of 4 times 10(exp 7) solar mass has been estimated from the dust mass derived from a broad-band color index image and the Infrared Astronomy Satellite (IRAS) data. The authors speculate that the presence of dust and gas in IC 1459 is a signature of a merger event

    ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03

    Full text link
    The far-infrared emission from rich galaxy clusters is investigated. Maps have been obtained by ISO at 60, 100, 135, and 200 microns using the PHT-C camera. Ground based imaging and spectroscopy were also acquired. Here we present the results for the cooling flow cluster Sersic 159-03. An infrared source coincident with the dominant cD galaxy is found. Some off-center sources are also present, but without any obvious counterparts.Comment: 6 pages, 4 postscript figures, accepted for publication in `Astronomy and Astrophysics

    The Spectrum of Integrated Millimeter Flux of the Magellanic Clouds and 30-Doradus from TopHat and DIRBE Data

    Full text link
    We present measurements of the integrated flux relative to the local background of the Large and Small Magellanic Clouds and the region 30-Doradus (the Tarantula Nebula) in the LMC in four frequency bands centered at 245, 400, 460, and 630 GHz, based on observations made with the TopHat telescope. We combine these observations with the corresponding measurements for the DIRBE bands 8, 9, and 10 to cover the frequency range 245 - 3000 GHz (100 - 1220 micrometers) for these objects. We present spectra for all three objects and fit these spectra to a single-component greybody emission model and report best-fit dust temperatures, optical depths, and emissivity power-law indices, and we compare these results with other measurements in these regions and elsewhere. Using published dust grain opacities, we estimate the mass of the measured dust component in the three regions.Comment: 41 pages, 4 figures. Accepted for publication in Astrophysical Journa

    On the Nature of the NGC 1275 System

    Get PDF
    Sub-arcsecond images, taken in B, R, and H-Alpha filters, and area spectroscopy obtained with the WIYN 3.5-m telescope provide the basis for an investigation of the unusual structures in the stellar body and ionized gas in and around the Perseus cluster central galaxy, NGC 1275. Our H-Alpha filter is tuned to gas at the velocity of NGC 1275, revealing complex, probably unresolved, small-scale features in the extended ionized gas, located up to 50/h kpc from NGC 1275. The mean H-Alpha surface brightness varies little along the outer filaments; this, together with the complex excitation state demonstrated by spectra, imply that the filaments are likely to be tubes, or ribbons, of gas. The morphology, location and inferred physical parameters of the gas in the filaments are consistent with a model whereby the filaments form through compression of the intracluster gas by relativistic plasma emitted from the active nucleus of NGC 1275. Imaging spectroscopy with the Densepak fiber array on WIYN suggests partial rotational support of the inner component of low velocity ionized gas. We confirm and extend evidence for features in the stellar body of NGC 1275, and identify outer stellar regions containing very blue, probably very young, star clusters. We interpret these as evidence for recent accretion of a gas-rich system, with subsequent star formation. We suggest that two main processes, which may be causally connected, are responsible for the rich phenomenology of the NGC 1275 system -- NGC 1275 experienced a recent merger/interaction with a group of gas-rich galaxies, and recent outflows from its AGN have compressed the intracluster gas, and perhaps the gas in the infalling galaxies, to produce a complex web of filaments. (Abridged)Comment: AJ, accepted; a recommended full resolution version is available at http://www.astro.wisc.edu/~chris/pera.p

    Ultraviolet Imaging Observations of the cD Galaxy in Abell 1795: Further Evidence for Massive Star Formation in a Cooling Flow

    Full text link
    We present images from the Ultraviolet Imaging Telescope of the Abell 1795 cluster of galaxies. We compare the cD galaxy morphology and photometry of these data with those from existing archival and published data. The addition of a far--UV color helps us to construct and test star formation model scenarios for the sources of UV emission. Models of star formation with rates in the range \sim5-20M_{\sun}yr1^{-1} indicate that the best fitting models are those with continuous star formation or a recent (4\sim4 Myr old) burst superimposed on an old population. The presence of dust in the galaxy, dramatically revealed by HST images complicates the interpretation of UV data. However, we find that the broad--band UV/optical colors of this cD galaxy can be reasonably matched by models using a Galactic form for the extinction law with EBV=0.14E_{B-V}=0.14. We also briefly discuss other objects in the large UIT field of view.Comment: To appear in the Astrophysical Journal. 14 AAS preprint style pages plus 7 figure

    Keck Spectroscopy of Candidate Proto-globular Clusters in NGC 1275

    Get PDF
    Keck spectroscopy of 5 proto-globular cluster candidates in NGC 1275 has been combined with HST WFPC2 photometry to explore the nature and origin of these objects and discriminate between merger and cooling flow scenarios for globular cluster formation. The objects we have studied are not HII regions, but rather star clusters, yet their integrated spectral properties do not resemble young or intermediate age Magellanic Cloud clusters or Milky Way open clusters. The clusters' Balmer absorption appears to be too strong to be consistent with any of the standard Bruzual & Charlot evolutionary models at any metallicity. If these models are adopted, an IMF which is skewed to high masses provides a better fit to the data. A truncated IMF with a mass range of 2-3 Mo reproduces the observed Balmer equivalent widths and colors at about 450 Myr. Formation in a continuous cooling flow appears to be ruled out since the age of the clusters is much larger than the cooling time, the spatial scale of the clusters is much smaller than the cooling flow radius, and the deduced star formation rate in the cooling flow favors a steep rather than a flat IMF. A merger would have to produce clusters only in the central few kpc, presumably from gas in the merging galaxies which was channeled rapidly to the center. Widespread shocks in merging galaxies cannot have produced these clusters. If these objects are confirmed to have a relatively flat, or truncated, IMF it is unclear whether or not they will evolve into objects we would regard as bona fide globular clusters.Comment: 30 pages (AAS two column style, including 9 tables and 7 figures) to appear in the AJ (August issue), also available at http://www.ucolick.org/~mkissler/Sages/sages.html (with a full resolution Fig.1) Revised Version: previous posted version was an uncorrect ealier iteration, parts of the text, tables and figures changed. The overall conclusions remain unchange

    Thermonuclear Burning Regimes and the Use of SNe Ia in Cosmology

    Full text link
    The calculations of the light curves of thermonuclear supernovae are carried out by a method of multi-group radiation hydrodynamics. The effects of spectral lines and expansion opacity are taken into account. The predictions for UBVI fluxes are given. The values of rise time for B and V bands found in our calculations are in good agreement with the observed values. We explain why our results for the rise time have more solid physical justification than those obtained by other authors. It is shown that small variations in the chemical composition of the ejecta, produced in the explosions with different regimes of nuclear burning, can influence drastically the light curve decline in the B band and, to a lesser extent, in the V band. We argue that recent results on positive cosmological constant Lambda, found from the high redshift supernova observations, could be wrong in the case of possible variations of the preferred mode of nuclear burning in the earlier Universe.Comment: 20 pages, 5 figures, presented at the conference "Astronomy at the Eve of the New Century", Puschino, May 17-22, 1999. A few references and a table added, typos correcte

    Observations of the Hubble Deep Field with the Infrared Space Observatory. IV. Association of sources with Hubble Deep Field Galaxies

    Get PDF
    We discuss the identification of sources detected by ISO at 6.7 and 15 micron in the Hubble Deep Field (HDF) region. We conservatively associate ISO sources with objects in existing optical and near-infrared HDF catalogues using the likelihood ratio method, confirming these results (and, in one case, clarifying them) with independent visual searches. We find fifteen ISO sources to be reliably associated with bright [I(AB) < 23] galaxies in the HDF, and one with an I(AB)=19.9 star, while a further eleven are associated with objects in the Hubble Flanking Fields (ten galaxies and one star). Amongst optically bright HDF galaxies, ISO tends to detect luminous, star-forming galaxies at fairly high redshift and with disturbed morphologies, in preference to nearby ellipticals.Comment: 8 pages, LaTeX (using mn.sty, epsfig), 3 figures (2 Postscript, 1 GIF) included. Gzipped Postscipt version available from http://artemis.ph.ic.ac.uk/hdf/papers/ps/. Further information on ISO-HDF project can be found at http://artemis.ph.ic.ac.uk/hdf

    SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology

    Get PDF
    HET Optical spectra covering the evolution from about 6 days before to about 5 weeks after maximum light and the ROTSE-IIIb unfiltered light curve of the "Branch-normal" Type Ia Supernova SN 2005hj are presented. The host galaxy shows HII region lines at redshift of z=0.0574, which puts the peak unfiltered absolute magnitude at a somewhat over-luminous -19.6. The spectra show weak and narrow SiII lines, and for a period of at least 10 days beginning around maximum light these profiles do not change in width or depth and they indicate a constant expansion velocity of ~10,600 km/s. We analyzed the observations based on detailed radiation dynamical models in the literature. Whereas delayed detonation and deflagration models have been used to explain the majority of SNe Ia, they do not predict a long velocity plateau in the SiII minimum with an unvarying line profile. Pulsating delayed detonations and merger scenarios form shell-like density structures with properties mostly related to the mass of the shell, M_shell, and we discuss how these models may explain the observed SiII line evolution; however, these models are based on spherical calculations and other possibilities may exist. SN 2005hj is consistent with respect to the onset, duration, and velocity of the plateau, the peak luminosity and, within the uncertainties, with the intrinsic colors for models with M_shell=0.2 M_sun. Our analysis suggests a distinct class of events hidden within the Branch-normal SNe Ia. If the predicted relations between observables are confirmed, they may provide a way to separate these two groups. We discuss the implications of two distinct progenitor classes on cosmological studies employing SNe Ia, including possible differences in the peak luminosity to light curve width relation.Comment: ApJ accepted, 31 page

    A Search for Very Extended Ionized Gas in Nearby Starburst and Active Galaxies

    Get PDF
    We report the results from a pilot study of 10 nearby starburst and active galaxies conducted with the Taurus Tunable Filter (TTF) on the Anglo-Australian and William Herschel Telescopes. The main purpose of this imaging survey is to search for warm emission-line gas on the outskirts (galactocentric distances R > 10 kpc) of galaxies to provide direct constraints on the size and geometry of the ``zone of influence'' of these galaxies on their environment. Gaseous complexes or filaments larger than ~ 20 kpc are discovered or confirmed in six of the galaxies in the sample (NGC 1068, NGC 1482, NGC 4388, NGC 6240, NGC 7213, and MR 2251-178). Slightly smaller structures are seen for the first time in the ionization cones and galactic winds of NGC 1365, NGC 1705, Circinus galaxy, and ESO484-G036. The TTF data are combined with new optical long-slit spectra as well as published and archived radio and X-ray maps to constrain the origin and source of ionization of these filaments. A broad range of phenomena is observed, including large-scale ionization cones and galactic winds, tidal interaction, and ram-pressure stripping by an intracluster medium. The source of ionization in this gas ranges from shock ionization to photoionization by the central AGN or in-situ hot young stars. The sample is too small to draw statistically meaningful conclusions about the extent and properties of the warm ionized medium on large scale and its relevance to galaxy formation and evolution. The next generation of tunable filters on large telescopes promises to improve the sensitivity to faint emission-line fluxes at least tenfold and allow systematic surveys of a large sample of emission-line galaxies.Comment: 17 pages + 20 gif figures (high-resolution color version of these gif figures will be available with the electronic version of the published paper). Accepted for publication in the Astronomical Journal, November 2003 issu
    corecore