29 research outputs found

    Subclinical leaflet thrombosis after transcatheter aortic valve implantation: no association with left ventricular reverse remodeling at 1-year follow-up

    Get PDF
    Hypo-attenuated leaflet thickening (HALT) of transcatheter aortic valves is detected on multidetector computed tomography (MDCT) and reflects leaflet thrombosis. Whether HALT affects left ventricular (LV) reverse remodeling, a favorable effect of LV afterload reduction after transcatheter aortic valve implantation (TAVI) is unknown. The aim of this study was to examine the association of HALT after TAVI with LV reverse remodeling. In this multicenter case-control study, patients with HALT on MDCT were identified, and patients without HALT were propensity matched for valve type and size, LV ejection fraction (LVEF), sex, age and time of scan. LV dimensions and function were assessed by transthoracic echocardiography before and 12 months after TAVI. Clinical outcomes (stroke or transient ischemic attack, heart failure hospitalization, new-onset atrial fibrillation, all-cause mortality) were recorded. 106 patients (age 81 +/- 7 years, 55% male) with MDCT performed 37 days [IQR 32-52] after TAVI were analyzed (53 patients with HALT and 53 matched controls). Before TAVI, all echocardiographic parameters were similar between the groups. At 12 months follow-up, patients with and without HALT showed a significant reduction in LV end-diastolic volume, LV end-systolic volume and LV mass index (from 125 +/- 37 to 105 +/- 46 g/m(2), p = 0.001 and from 127 +/- 35 to 101 +/- 27 g/m(2), p < 0.001, respectively, p for interaction = 0.48). Moreover, LVEF improved significantly in both groups. In addition, clinical outcomes were not statistically different. Improvement in LVEF and LV reverse remodeling at 12 months after TAVI were not limited by HALT.Cardiolog

    1-year impact on medical practice and clinical outcomes of FFRCT the ADVANCE registry

    Get PDF
    OBJECTIVES The 1-year data from the international ADVANCE (Assessing Diagnostic Value of Non-invasive FFRCT in Coronary Care) Registry of patients undergoing coronary computed tomography angiography (CTA) was used to evaluate the relationship of fractional flow reserve derived from coronary CTA (FFRCT) with downstream care and clinical outcomes.BACKGROUND Guidelines for management of chest pain using noninvasive imaging pathways are based on short- to intermediate-term outcomes.METHODS Patients (N = 5,083) evaluated for clinically suspected coronary artery disease and in whom atherosclerosis was identified by coronary CTA were prospectively enrolled at 38 international sites from July 15, 2015, to October 20, 2017. Demographics, symptom status, coronary CTA and FFRCT findings and resultant site-based treatment plans, and clinical outcomes through 1 year were recorded and adjudicated by a blinded core laboratory. Major adverse cardiac events (MACE), death, myocardial infarction (MI), and acute coronary syndrome leading to urgent revascularization were captured.RESULTS At 1 year, 449 patients did not have follow-up data. Revascularization occurred in 1,208 (38.40%) patients with an FFRCT 0.80 (relative risk [RR]: 6.87; 95% confidence interval [CI]: 5.59 to 8.45; p 0.80 (RR: 1.81; 95% CI: 0.96 to 3.43; p = 0.06). Time to first event (all-cause death or MI) occurred in 38 (1.20%) patients with an FFRCT 0.80 (RR: 1.92; 95% CI: 0.96 to 3.85; p = 0.06). Time to first event (cardiovascular death or MI) occurred cardiovascular death or MI occurred more in patients with an FFRCT 0.80 (25 [0.80%] vs. 3 [0.20%]; RR: 4.22; 95% CI: 1.28 to 13.95; p = 0.01).CONCLUSIONS The 1-year outcomes from the ADVANCE FFRCT Registry show low rates of events in all patients, with less revascularization and a trend toward lower MACE and significantly lower cardiovascular death or MI in patients with a negative FFRCT compared with patients with abnormal FFRCT values. (Assessing Diagnostic Value of Non-invasive FFRCT in Coronary Wave [ADVANCE]; NCT02499679) (C) 2020 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.Cardiolog

    Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: Meta-analysis of individual patient data

    Get PDF
    Objective To determine whether coronary computed tomography angiography (CTA) should be performed in patients with any clinical probability of coronary artery disease (CAD), and whether the diagnostic performance differs between subgroups of patients. Design Prospectively designed meta-analysis of individual patient data from prospective diagnostic accuracy studies. Data sources Medline, Embase, and Web of Science for published studies. Unpublished studies were identified via direct contact with participating investigators. Eligibility criteria for selecting studies Prospective diagnostic accuracy studies that compared coronary CTA with coronary angiography as the reference standard, using at least a 50% diameter reduction as a cutoff value for obstructive CAD. All patients needed to have a clinical indication for coronary angiography due to suspected CAD, and both tests had to be performed in all patients. Results had to be provided using 2 72 or 3 72 cross tabulations for the comparison of CTA with coronary angiography. Primary outcomes were the positive and negative predictive values of CTA as a function of clinical pretest probability of obstructive CAD, analysed by a generalised linear mixed model; calculations were performed including and excluding non-diagnostic CTA results. The no-treat/treat threshold model was used to determine the range of appropriate pretest probabilities for CTA. The threshold model was based on obtained post-test probabilities of less than 15% in case of negative CTA and above 50% in case of positive CTA. Sex, angina pectoris type, age, and number of computed tomography detector rows were used as clinical variables to analyse the diagnostic performance in relevant subgroups. Results Individual patient data from 5332 patients from 65 prospective diagnostic accuracy studies were retrieved. For a pretest probability range of 7-67%, the treat threshold of more than 50% and the no-treat threshold of less than 15% post-test probability were obtained using CTA. At a pretest probability of 7%, the positive predictive value of CTA was 50.9% (95% confidence interval 43.3% to 57.7%) and the negative predictive value of CTA was 97.8% (96.4% to 98.7%); corresponding values at a pretest probability of 67% were 82.7% (78.3% to 86.2%) and 85.0% (80.2% to 88.9%), respectively. The overall sensitivity of CTA was 95.2% (92.6% to 96.9%) and the specificity was 79.2% (74.9% to 82.9%). CTA using more than 64 detector rows was associated with a higher empirical sensitivity than CTA using up to 64 rows (93.4% v 86.5%, P=0.002) and specificity (84.4% v 72.6%, P&lt;0.001). The area under the receiver-operating-characteristic curve for CTA was 0.897 (0.889 to 0.906), and the diagnostic performance of CTA was slightly lower in women than in with men (area under the curve 0.874 (0.858 to 0.890) v 0.907 (0.897 to 0.916), P&lt;0.001). The diagnostic performance of CTA was slightly lower in patients older than 75 (0.864 (0.834 to 0.894), P=0.018 v all other age groups) and was not significantly influenced by angina pectoris type (typical angina 0.895 (0.873 to 0.917), atypical angina 0.898 (0.884 to 0.913), non-anginal chest pain 0.884 (0.870 to 0.899), other chest discomfort 0.915 (0.897 to 0.934)). Conclusions In a no-treat/treat threshold model, the diagnosis of obstructive CAD using coronary CTA in patients with stable chest pain was most accurate when the clinical pretest probability was between 7% and 67%. Performance of CTA was not influenced by the angina pectoris type and was slightly higher in men and lower in older patients. Systematic review registration PROSPERO CRD42012002780

    The Future of Cardiovascular Computed Tomography Advanced Analytics and Clinical Insights

    No full text
    Cardiovascular computed tomography (CCT) has undergone rapid maturation over the last decade and is now of proven clinical utility in the diagnosis and management of coronary artery disease, in guiding structural heart disease intervention, and in the diagnosis and treatment of congenital heart disease. The next decade will undoubtedly witness further advances in hardware and advanced analytics that will potentially see an increasingly core role for CCT at the center of clinical cardiovascular practice. In coronary artery disease assessment this may be via improved hemodynamic adjudication, and shear stress analysis using computational flow dynamics, more accurate and robust plaque characterization with spectral or photon- counting CT, or advanced quantification of CT data via artificial intelligence, machine learning, and radiomics. In structural heart disease, CCT is already pivotal to procedural planning with adjudication of gradients before and following intervention, whereas in congenital heart disease CCT is already used to support clinical decision making from neonates to adults, often with minimal radiation dose. In both these areas the role of computational flow dynamics, advanced tissue printing, and image modelling has the potential to revolutionize the way these complex conditions are managed, and CCT is likely to become an increasingly critical enabler across the whole advancing field of cardiovascular medicine. (c) 2019 by the American College of Cardiology Foundation.Cardiolog

    Cardiac computed tomography-derived coronary artery volume to myocardial mass

    No full text
    In the absence of disease impacting the coronary arteries or myocardium, there exists a linear relationship between vessel volume and myocardial mass to ensure balanced distribution of blood supply. This balance may be disturbed in diseases of either the coronary artery tree, the myocardium, or both. However, in contemporary evaluation the coronary artery anatomy and myocardium are assessed separately. Recently the coronary lumen volume to myocardial mass ratio (V/M), measured noninvasively using coronary computed tomography angiography (CTCA), has emerged as an integrated measure of myocardial blood supply and demand in vivo. This has the potential to yield new insights into diseases where this balance is altered, thus impacting clinical diagnoses and management.In this review, we outline the scientific methodology underpinning CTCA-derived measurement of V/M. We describe recent studies describing alterations in V/M across a range of cardiovascular conditions, including coronary artery disease, cardiomyopathies and coronary microvascular dysfunction. Lastly, we highlight areas of unmet research need and future directions, where V/M may further enhance our understanding of the pathophysiology of cardiovascular disease.Cardiolog

    Cardiac computed tomography-derived coronary artery volume to myocardial mass

    Get PDF
    In the absence of disease impacting the coronary arteries or myocardium, there exists a linear relationship between vessel volume and myocardial mass to ensure balanced distribution of blood supply. This balance may be disturbed in diseases of either the coronary artery tree, the myocardium, or both. However, in contemporary evaluation the coronary artery anatomy and myocardium are assessed separately. Recently the coronary lumen volume to myocardial mass ratio (V/M), measured noninvasively using coronary computed tomography angiography (CTCA), has emerged as an integrated measure of myocardial blood supply and demand in vivo. This has the potential to yield new insights into diseases where this balance is altered, thus impacting clinical diagnoses and management.In this review, we outline the scientific methodology underpinning CTCA-derived measurement of V/M. We describe recent studies describing alterations in V/M across a range of cardiovascular conditions, including coronary artery disease, cardiomyopathies and coronary microvascular dysfunction. Lastly, we highlight areas of unmet research need and future directions, where V/M may further enhance our understanding of the pathophysiology of cardiovascular disease.</p

    Coronary Computed Tomographic Angiography for Complete Assessment of Coronary Artery Disease: JACC State-of-the-Art Review

    No full text
    Coronary computed tomography angiography (CTA) has shown great technological improvements over the last 2 decades. High accuracy of CTA in detecting significant coronary stenosis has promoted CTA as a substitute for conven-tional invasive coronary angiography in patients with suspected coronary artery disease. In patients with coronary stenosis, CTA-derived physiological assessment is surrogate for intracoronary pressure and velocity wires, and renders possible decision-making about revascularization solely based on computed tomography. Computed tomography coro-nary anatomy with functionality assessment could potentially become a first line in diagnosis. Noninvasive imaging assessment of plaque burden and morphology is becoming a valuable substitute for intravascular imaging. Recently, wall shear stress and perivascular inflammation have been introduced. These assessments could support risk management for both primary and secondary cardiovascular prevention. Anatomy, functionality, and plaque composition by CTA tend to replace invasive assessment. Complete CTA assessment could provide a 1-stop-shop for diagnosis, risk management, and decision-making on treatment. (J Am Coll Cardiol 2021;78:713-736) (c) 2021 by the American College of Cardiology Foundation.Cardiolog
    corecore