146 research outputs found

    The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis

    Get PDF
    EphB4 and its cognitive ligand ephrinB2 play an important role in embryonic vessel development and vascular remodeling. In addition, several reports suggest that this receptor ligand pair is also involved in pathologic vessel formation in adults including tumor angiogenesis. Eph/ephrin signaling is a complex phenomena characterized by receptor forward signaling through the tyrosine kinase of the receptor and ephrin reverse signaling through various protein–protein interaction domains and phosphorylation motifs of the ephrin ligands. Therefore, interfering with EphR/ephrin signaling by the means of targeted gene ablation, soluble receptors, dominant negative mutants or antisense molecules often does not allow to discriminate between inhibition of Eph/ephrin forward and reverse signaling. We developed a specific small molecular weight kinase inhibitor of the EphB4 kinase, NVP-BHG712, which inhibits EphB4 kinase activity in the low nanomolar range in cellular assays showed high selectivity for targeting the EphB4 kinase when profiled against other kinases in biochemical as well as in cell based assays. Furthermore, NVP-BHG712 shows excellent pharmacokinetic properties and potently inhibits EphB4 autophosphorylation in tissues after oral administration. In vivo, NVP-BHG712 inhibits VEGF driven vessel formation, while it has only little effects on VEGF receptor (VEGFR) activity in vitro or in cellular assays. The data shown here suggest a close cross talk between the VEGFR and EphR signaling during vessel formation. In addition to its established function in vascular remodeling and endothelial arterio-venous differentiation, EphB4 forward signaling appears to be an important mediator of VEGF induced angiogenesis since inhibition of EphB4 forward signaling is sufficient to inhibit VEGF induced angiogenesis

    The Na(+)–H(+ )exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells

    Get PDF
    INTRODUCTION: An increasing body of evidence shows that the tumour microenvironment is essential in driving neoplastic progression. The low serum component of this microenvironment stimulates motility/invasion in human breast cancer cells via activation of the Na(+)–H(+ )exchanger (NHE) isoform 1, but the signal transduction systems that underlie this process are still poorly understood. We undertook the present study to elucidate the role and pattern of regulation by the Rho GTPases of this serum deprivation-dependent activation of both NHE1 and subsequent invasive characteristics, such as pseudopodia and invadiopodia protrusion, directed cell motility and penetration of normal tissues. METHODS: The present study was performed in a well characterized human mammary epithelial cell line representing late stage metastatic progression, MDA-MB-435. The activity of RhoA and Rac1 was modified using their dominant negative and constitutively active mutants and the activity of NHE1, cell motility/invasion, F-actin content and cell shape were measured. RESULTS: We show for the first time that serum deprivation induces NHE1-dependent morphological and cytoskeletal changes in metastatic cells via a reciprocal interaction of RhoA and Rac1, resulting in increased chemotaxis and invasion. Deprivation changed cell shape by reducing the amount of F-actin and inducing the formation of leading edge pseudopodia. Serum deprivation inhibited RhoA activity and stimulated Rac1 activity. Rac1 and RhoA were antagonistic regulators of both basal and stimulated tumour cell NHE1 activity. The regulation of NHE1 activity by RhoA and Rac1 in both conditions was mediated by an alteration in intracellular proton affinity of the exchanger. Interestingly, the role of each of these G-proteins was reversed during serum deprivation; basal NHE1 activity was regulated positively by RhoA and negatively by Rac1, whereas RhoA negatively and Rac1 positively directed the stimulation of NHE1 during serum deprivation. Importantly, the same pattern of RhoA and Rac1 regulation found for NHE1 activity was observed in both basal and serum deprivation dependent increases in motility, invasion and actin cytoskeletal organization. CONCLUSION: Our findings suggest that the reported antagonistic roles of RhoA and Rac1 in cell motility/invasion and cytoskeletal organization may be due, in part, to their concerted action on NHE1 activity as a convergence point

    Bee Venom Induces Unfolded Protein Response in A172 Glioblastoma Cell Line

    Get PDF
    Background: Glioblastoma is a type of brain tumor with poor response to available therapies, and shows high rate of mortality. Despite remarkable advancements in our knowledge about cytogenetic and pathophysiologic features of glioblastoma, current treatment strategies are mainly based on cytotoxic drugs; however, these therapeutic approaches are facing progressive failure because of the resistant nature of glioblastomas. In the recent years, however, promising results have emerged owing to targeted therapies toward molecular pathways within cancerous cells. Unfolded Protein Response (UPR) is a remarkable signaling pathway that triggers both apoptosis and survival pathways within cells, and therefore induces UPR-related apoptotic pathways in cancer cells by ER stress inducers. Objectives: Recently, the role of Bee venom (Bv), which contains powerful bioactive peptides, in inducing UPR-related apoptosis was revealed in cancer cell lines. Nevertheless, currently there are no reports of Bv potential ability in induction of UPR apoptotic routes in glioblastoma. The aim of current study was to evaluate possible role of Bee venome in inducing of UPR pathway within A172 glioblastoma cell line. Materials and Methods: We treated the A172 glioblastoma cell line with different Bv doses, and assessed UPR-related genes expression by real-time Polymerase Chain Reaction (PCR). Results: The IC50 of Bv for the studied cell line was 28 μg/mL. Furthermore, we observed that Bv can induce UPR target genes (Grp94 and Gadd153) over-expression through a dose-dependent mechanism. Conclusions: Our results suggest the potential role of Bv as a therapeutic agent for glioblastomas. Keywords: Glioblastoma; A172 Cell Line; Unfolded Protein Response; Bee Veno

    Eph receptors in breast cancer: roles in tumor promotion and tumor suppression

    Get PDF
    Eph receptor tyrosine kinase signaling regulates cancer initiation and metastatic progression through multiple mechanisms. Studies of tumor-cell-autonomous effects of Eph receptors demonstrate their dual roles in tumor suppression and tumor promotion. In addition, Eph molecules function in the tumor microenvironment, such as in vascular endothelial cells, influencing the ability of these molecules to promote carcinoma progression and metastasis. The complex nature of Eph receptor signaling and crosstalk with other receptor tyrosine kinases presents a unique challenge and an opportunity to develop therapeutic intervention strategies for targeting breast cancer

    Eph/Ephrin Profiling in Human Breast Cancer Reveals Significant Associations between Expression Level and Clinical Outcome

    Get PDF
    Pre-clinical studies provide compelling evidence that Eph family receptor tyrosine kinases (RTKs) and ligands promote cancer growth, neovascularization, invasion, and metastasis. Tumor suppressive roles have also been reported for the receptors, however, creating a potential barrier for clinical application. Determining how these observations relate to clinical outcome is a crucial step for translating the biological and mechanistic data into new molecularly targeted therapies. We investigated eph and ephrin expression in human breast cancer relative to endpoints of overall and/or recurrence-free survival in large microarray datasets. We also investigated protein expression in commercial human breast tissue microarrays (TMA) and Stage I prognostic TMAs linked to recurrence outcome data. We found significant correlations between ephA2, ephA4, ephA7, ephB4, and ephB6 and overall and/or recurrence-free survival in large microarray datasets. Protein expression in TMAs supported these trends. While observed no correlation between ephrin ligand expression and clinical outcome in microarray datasets, ephrin-A1 and EphA2 protein co-expression was significantly associated with recurrence in Stage I prognostic breast cancer TMAs. Our data suggest that several Eph family members are clinically relevant and tractable targets for intervention in human breast cancer. Moreover, profiling Eph receptor expression patterns in the context of relevant ligands and in the context of stage may be valuable in terms of diagnostics and treatment

    PEGylation Potentiates the Effectiveness of an Antagonistic Peptide That Targets the EphB4 Receptor with Nanomolar Affinity

    Get PDF
    The EphB4 receptor tyrosine kinase together with its preferred ligand, ephrin-B2, regulates a variety of physiological and pathological processes, including tumor progression, pathological forms of angiogenesis, cardiomyocyte differentiation and bone remodeling. We previously reported the identification of TNYL-RAW, a 15 amino acid-long peptide that binds to the ephrin-binding pocked of EphB4 with low nanomolar affinity and inhibits ephrin-B2 binding. Although ephrin-B2 interacts promiscuously with all the EphB receptors, the TNYL-RAW peptide is remarkably selective and only binds to EphB4. Therefore, this peptide is a useful tool for studying the biological functions of EphB4 and for imaging EphB4-expressing tumors. Furthermore, TNYL-RAW could be useful for treating pathologies involving EphB4-ephrin-B2 interaction. However, the peptide has a very short half-life in cell culture and in the mouse blood circulation due to proteolytic degradation and clearance by the kidneys and reticuloendothelial system. To overcome these limitations, we have modified TNYL-RAW by fusion with the Fc portion of human IgG1, complexation with streptavidin or covalent coupling to a 40 KDa branched polyethylene glycol (PEG) polymer. These modified forms of TNYL-RAW all have greatly increased stability in cell culture, while retaining high binding affinity for EphB4. Furthermore, PEGylation most effectively increases peptide half-life in vivo. Consistent with increased stability, submicromolar concentrations of PEGylated TNYL-RAW effectively impair EphB4 activation by ephrin-B2 in cultured B16 melanoma cells as well as capillary-like tube formation and capillary sprouting in co-cultures of endothelial and epicardial mesothelial cells. Therefore, PEGylated TNYL-RAW may be useful for inhibiting pathological forms of angiogenesis through a novel mechanism involving disruption of EphB4-ephrin-B2 interactions between endothelial cells and supporting perivascular mesenchymal cells. Furthermore, the PEGylated peptide is suitable for other cell culture and in vivo applications requiring prolonged EphB4 receptor targeting

    c-Crk proto-oncogene contributes to transcriptional repression of p120-catenin in non-small cell lung cancer cells

    Get PDF
    As a member of adherens junction, p120-catenin (p120ctn) plays a major role in cell adhesions through stabilization of E-cadherin. p120ctn is transcriptionally down-regulated in non-small cell lung cancer (NSCLC), although the molecular mechanisms underlying p120ctn repression are incompletely defined. Here we further investigated transcriptional regulation of p120ctn in NSCLC. We prepared a promoter reporter plasmid construct that contained p120ctn promoter region from position −1082 to +320 relative to transcription start site. Through serial deletion mutation analysis of the p120ctn promoter, we pinpointed cis-acting elements involved in regulation of p120ctn. We identified transcription factor SP1 as a transcriptional repressor of p120ctn that directly binds to segment (−9 to +36) of the p120ctn promoter. SP1 can receive multiple signals from several intracellular signaling pathways. Through examination of SP1 binding partners, we identified proto-oncogene c-Crk to be involved in transcriptional down-regulation of p120ctn. RNAi mediated silencing of CRK in A549, H157 and H358 cells increased p120ctn protein levels. On the other hand, over-expression of CRK-I and CRK-II in NSCLC cells down-regulated p120ctn, an effect that was abrogated by simultaneous silencing of SP1. In summary, our data provide evidence for the role of c-Crk proto-oncogene in transcriptional repression of p120ctn that further clarifies the mechanism by which this biochemical signal promotes metastasis in NSCLC

    Expression of RHOGTPase regulators in human myometrium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RHOGTPases play a significant role in modulating myometrial contractility in uterine smooth muscle. They are regulated by at least three families of proteins, RHO guanine nucleotide exchange factors (RHOGEFs), RHOGTPase-activating proteins (RHOGAPs) and RHO guanine nucleotide inhibitors (RHOGDIs). RHOGEFs activate RHOGTPases from the inactive GDP-bound to the active GTP-bound form. RHOGAPs deactivate RHOGTPases by accelerating the intrinsic GTPase activity of the RHOGTPases, converting them from the active to the inactive form. RHOGDIs bind to GDP-bound RHOGTPases and sequester them in the cytosol, thereby inhibiting their activity. Ezrin-Radixin-Moesin (ERM) proteins regulate the cortical actin cytoskeleton, and an ERM protein, moesin (MSN), is activated by and can also activate RHOGTPases.</p> <p>Methods</p> <p>We therefore investigated the expression of various RHOGEFs, RHOGAPs, a RHOGDI and MSN in human myometrium, by semi-quantitative reverse transcription PCR, real-time fluorescence RT-PCR, western blotting and immunofluorescence microscopy. Expression of these molecules was also examined in myometrial smooth muscle cells.</p> <p>Results</p> <p>ARHGEF1, ARHGEF11, ARHGEF12, ARHGAP5, ARHGAP24, ARHGDIA and MSN mRNA and protein expression was confirmed in human myometrium at term pregnancy, at labour and in the non-pregnant state. Furthermore, their expression was detected in myometrial smooth muscle cells. It was determined that ARHGAP24 mRNA expression significantly increased at labour in comparison to the non-labour state.</p> <p>Conclusion</p> <p>This study demonstrated for the first time the expression of the RHOGTPase regulators ARHGEF1, ARHGEF11, ARHGEF12, ARHGAP5, ARHGAP24, ARHGDIA and MSN in human myometrium, at term pregnancy, at labour, in the non-pregnant state and also in myometrial smooth muscle cells. ARHGAP24 mRNA expression significantly increased at labour in comparison to the non-labouring state. Further investigation of these molecules may enable us to further our knowledge of RHOGTPase regulation in human myometrium during pregnancy and labour.</p

    The receptor tyrosine kinase EphB4 is overexpressed in ovarian cancer, provides survival signals and predicts poor outcome

    Get PDF
    EphB4 is a member of the largest family of transmembrane receptor tyrosine kinases and plays critical roles in axonal pathfinding and blood vessel maturation. We wanted to determine the biological role of EphB4 in ovarian cancer. We studied the expression of EphB4 in seven normal ovarian specimens and 85 invasive ovarian carcinomas by immunohistochemistry. EphB4 expression was largely absent in normal ovarian surface epithelium, but was expressed in 86% of ovarian cancers. EphB4 expression was significantly associated with advanced stage of disease and the presence of ascites. Overexpression of EphB4 predicted poor survival in both univariate and multivariate analyses. We also studied the biological significance of EphB4 expression in ovarian tumour cells lines in vitro and in vivo. All five malignant ovarian tumour cell lines tested expressed higher levels of EphB4 compared with the two benign cell lines. Treatment of malignant, but not benign, ovarian tumour cell lines with progesterone, but not oestrogen, led to a 90% reduction in EphB4 levels that was associated with 50% reduction in cell survival. Inhibition of EphB4 expression by specific siRNA or antisense oligonucleotides significantly inhibited tumour cell viability by inducing apoptosis via activation of caspase-8, and also inhibited tumour cell invasion and migration. Furthermore, EphB4 antisense significantly inhibited growth of ovarian tumour xenografts and tumour microvasculature in vivo. Inhibition of EphB4 may hence have prognostic and therapeutic utility in ovarian carcinoma

    Investigation of the expression of the EphB4 receptor tyrosine kinase in prostate carcinoma

    Get PDF
    BACKGROUND: The EphB4 receptor tyrosine kinase has been reported as increased in tumours originating from several different tissues and its expression in a prostate cancer xenograft model has been reported. METHODS: RT-PCR, western blotting and immunohistochemical techniques were used to examine EphB4 expression and protein levels in human prostate cancer cell lines LNCaP, DU145 and PC3. Immunohistochemistry was also used to examine localisation of EphB4 in tissue samples from 15 patients with prostate carcinomas. RESULTS: All three prostate cancer cell lines expressed the EphB4 gene and protein. EphB4 immunoreactivity in vivo was significantly greater in human prostate cancers as compared with matched normal prostate epithelium and there appeared to be a trend towards increased expression with higher grade disease. CONCLUSION: EphB4 is expressed in prostate cancer cell lines with increased expression in human prostate cancers when compared with matched normal tissue. EphB4 may therefore be a useful anti-prostate cancer target
    corecore