81 research outputs found

    Prostanoid receptors in GtoPdb v.2023.1

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [701]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2α, PGH2, prostacyclin [PGI2] and thromboxane A2. Differences and similarities between human and rodent prostanoid receptor orthologues, and their specific roles in pathophysiologic conditions are reviewed in [452]. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies

    Prostanoid receptors in GtoPdb v.2023.1

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [701]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2α, PGH2, prostacyclin [PGI2] and thromboxane A2. Differences and similarities between human and rodent prostanoid receptor orthologues, and their specific roles in pathophysiologic conditions are reviewed in [452]. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies

    Prostanoid receptors in GtoPdb v.2021.2

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [694]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2α, PGH2, prostacyclin [PGI2] and thromboxane A2. Differences and similarities between human and rodent prostanoid receptor orthologues, and their specific roles in pathophysiologic conditions are reviewed in [448]. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies

    Photo-modulable Molecular Transport Junctions based on Organometallic Molecular Wires

    No full text
    International audiencePhoto-modulable molecular transport junctions are developed via on-wire lithography-fabricated nanogaps functionalized with a dithienylethene unit bearing two ruthenium fragments. A reversible and repeatable bi-state conductive switching upon alternate irradiation of UV and visible light can be distinctly observed. Theoretical calculations further suggest that bi-directional isomerization is due to the ruthenium moieties that modulate judiciously the electronic coupling between the photochromic part and the metal electrodes, and that the differences in electronic structure between the two isomers (open and closed states) are responsible for conductivity switching

    Prostanoid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [644]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2α, PGH2, prostacyclin [PGI2] and thromboxane A2. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies

    International Union of Basic and Clinical Pharmacology: Differences and similarities between human and rodents concerning prostaglandin EP1-4 and IP receptors: Specific roles in pathophysiologic conditions

    Get PDF
    Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI(2)) and PGE(2) are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI(2) and PGE(2) exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E-2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies

    Prostanoid receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [661]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2α, PGH2, prostacyclin [PGI2] and thromboxane A2. Differences and similarities between human and rodent prostanoid receptor orthologues, and their specific roles in pathophysiologic conditions are reviewed in [423]. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies

    Prostanoid receptors (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [659]) are activated by the endogenous ligands prostaglandins PGD2, PGE1, PGE2 , PGF2α, PGH2, prostacyclin [PGI2] and thromboxane A2. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
    corecore