1,209 research outputs found

    Journal Staff

    Get PDF
    A time-dependent coordinate transformation of a constant coeffcient hyperbolic equation which results in a variable coeffcient problem is considered. By using the energy method, we derive well-posed boundary conditions for the continuous problem. It is shown that the number of boundary conditions depend on the coordinate transformation. By using Summation-by-Parts (SBP) operators for the space discretization and weak boundary conditions, an energy stable finite dieffrence scheme is obtained. We also show how to construct a time-dependent penalty formulation that automatically imposes the right number of boundary conditions. Numerical calculations corroborate the stability and accuracy of the approximations

    Horizon Mass Theorem

    Full text link
    A new theorem for black holes is found. It is called the horizon mass theorem. The horizon mass is the mass which cannot escape from the horizon of a black hole. For all black holes: neutral, charged or rotating, the horizon mass is always twice the irreducible mass observed at infinity. Previous theorems on black holes are: 1. the singularity theorem, 2. the area theorem, 3. the uniqueness theorem, 4. the positive energy theorem. The horizon mass theorem is possibly the last general theorem for classical black holes. It is crucial for understanding Hawking radiation and for investigating processes occurring near the horizon.Comment: A new theorem for black holes is establishe

    See a Black Hole on a Shoestring

    Full text link
    The modes of vibration of hanging and partially supported strings provide useful analogies to scalar fields travelling through spacetimes that admit conformally flat spatial sections. This wide class of spacetimes includes static, spherically symmetric spacetimes. The modes of a spacetime where the scale factor depends as a power-law on one of the coordinates provide a useful starting point and yield a new classification of these spacetimes on the basis of the shape of the string analogue. The family of corresponding strings follow a family of curves related to the cycloid, denoted here as hypercycloids (for reasons that will become apparent). Like the spacetimes that they emulate these strings exhibit horizons, typically at their bottommost points where the string tension vanishes; therefore, hanging strings may provide a new avenue for the exploration of the quantum mechanics of horizons.Comment: 5 pages, 1 figure, extensive changes to refect version accepted to PR

    Electrically charged fluids with pressure in Newtonian gravitation and general relativity in d spacetime dimensions: theorems and results for Weyl type systems

    Full text link
    Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou systems, are generalized in two ways, namely, we take these theorems into d spacetime dimensions (d4{\rm d}\geq4), and we also consider the very interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids with nonzero pressure. In particular within Newton-Coulomb theory of charged gravitating fluids, a theorem by Bonnor (1980) in three-dimensional space is generalized to arbitrary (d1)>3({\rm d}-1)>3 space dimensions. Then, we prove a new theorem for charged gravitating fluid systems in which we find the condition that the charge density and the matter density should obey. Within general relativity coupled to charged dust fluids, a theorem by De and Raychaudhuri (1968) in four-dimensional spacetimes in rendered into arbitrary d>4{\rm d}>4 dimensions. Then a theorem, new in d=4{\rm d}=4 and d>4{\rm d}>4 dimensions, for Weyl-Guilfoyle systems, is stated and proved, in which we find the condition that the charge density, the matter density, the pressure, and the electromagnetic energy density should obey. This theorem comprises, as particular cases, a theorem by Gautreau and Hoffman (1973) and results in four dimensions by Guilfoyle (1999). Upon connection of an interior charged solution to an exterior Tangherlini solution (i.e., a Reissner-Nordstr\"om solution in d-dimensions), one is able to give a general definition for gravitational mass for this kind of relativistic systems and find a mass relation with the several quantities of the interior solution. It is also shown that for sources of finite extent the mass is identical to the Tolman mass.Comment: 27 page

    A Note on Segre Types of Second Order Symmetric Tensors in 5-D Brane-world Cosmology

    Full text link
    Recent developments in string theory suggest that there might exist extra spatial dimensions, which are not small nor compact. The framework of most brane cosmological models is that in which the matter fields are confined on a brane-world embedded in five dimensions (the bulk). Motivated by this we reexamine the classification of the second order symmetric tensors in 5--D, and prove two theorems which collect together some basic results on the algebraic structure of these tensors in 5-dimensional space-times. We also briefly indicate how one can obtain, by induction, the classification of symmetric two-tensors (and the corresponding canonical forms) on n-dimensional spaces from the classification on 4-dimensional spaces. This is important in the context of 11--D supergravity and 10--D superstrings.Comment: 12 pages, to appear in Mod. Phys. Lett. A (2003) in the present for

    Report of IAU Commission 30 on Radial Velocities (2006-2009)

    Get PDF
    Brief summaries are given on the following subjects: Radial velocities and exoplanets (Toward Earth-mass planets; Retired A stars and their planets; Current status and prospects); Toward higher radial velocity precision; Radial velocities and asteroseismology; Radial velocities in Galactic and extragalactic clusters; Radial velocities for field giants; Galactic structure -- Large surveys (The Geneva-Copenhagen Survey; Sloan Digital Sky Survey; RAVE); Working groups (WG on radial velocity standards; WG on stellar radial velocity bibliography; WG on the catalogue of orbital elements of spectroscopic binaries [SB9]).Comment: 11 pages, to appear in the IAU Transactions Vol. XXVIIA, Reports on Astronomy 2006-2009, ed. Karel van der Hucht. Editor: G. Torre

    Geometry and quantum delocalization of interstitial oxygen in silicon

    Full text link
    The problem of the geometry of interstitial oxygen in silicon is settled by proper consideration of the quantum delocalization of the oxygen atom around the bond-center position. The calculated infrared absorption spectrum accounts for the 517 and 1136 cm1^{-1} bands in their position, character, and isotope shifts. The asymmetric lineshape of the 517 cm1^{-1} peak is also well reproduced. A new, non-infrared-active, symmetric-stretching mode is found at 596 cm1^{-1}. First-principles calculations are presented supporting the nontrivial quantum delocalization of the oxygen atom.Comment: uuencoded, compressed postscript file for the whole. 4 pages (figures included), accepted in PR

    Black string and velocity frame dragging

    Full text link
    We investigate velocity frame dragging with the boosted Schwarzschild black string solution and the boosted Kaluza-Klein bubble solution, in which a translational symmetry along the boosted zz-coordinate is implemented. The velocity frame dragging effect can be nullified by the motion of an observer using the boost symmetry along the zz-coordinate if it is not compact. However, in spacetime with the compact zz-coordinate, we show that the effect cannot be removed since the compactification breaks the global Lorentz boost symmetry. As a result, the comoving velocity is dependent on rr and the momentum parameter along the zz-coordinate becomes an observer independent characteristic quantity of the black string and bubble solutions. The dragging induces a spherical ergo-region around the black string.Comment: 8 pages, no figure, some correction

    Warped product approach to universe with non-smooth scale factor

    Full text link
    In the framework of Lorentzian warped products, we study the Friedmann-Robertson-Walker cosmological model to investigate non-smooth curvatures associated with multiple discontinuities involved in the evolution of the universe. In particular we analyze non-smooth features of the spatially flat Friedmann-Robertson-Walker universe by introducing double discontinuities occurred at the radiation-matter and matter-lambda phase transitions in astrophysical phenomenology.Comment: 10 page
    corecore