28 research outputs found

    Laser assisted fiber growth

    Get PDF
    Small diameter fibers formed from the use of laser energy and gaseous reactants and are disclosed. Also disclosed is an apparatus and method for the formation of continuous, substrate free, crystalline or amorphous fibers. Materials which can be formed into small diameter fibers include boron, silicon, germanium, zinc, tungsten, cadium, gallium, thenium, and compounds and mixtures thereof. The fibers have a diameter of about 10 micrometers to about 170 micrometers. The apparatus for producing the fibers includes a laser, a reaction chamber, and gas supply means. The laser beam has a focal point adjusted to coincide with the tip of the growing fiber, the focal point of the laser creating a region of elevated temperature at the fiber tip

    Direct emissivity measurements on liquids and corrections to multi-color pyrometers

    Get PDF
    Optical pyrometry provides a means for non-contact temperature measurements whose accuracy depends on the accuracy with which specimen emittance is known. Two methods for obtaining the required emittance data are discussed in which the emittance is determined from measurements of the wavelength or polarization dependence of light emitted by the specimen. The spectral technique, multi-color pyrometry, yields apparent values for specimen emittance and temperature from emitted intensity measurements at two or more wavelengths. Emittance corrections cannot be eliminated by increasing the number of spectral intensity measurements required by an n-color pyrometer. Even if this were possible, the accuracy of temperature measurements by n-color pyrometry decreases with n such that pyrometers that require four intensity measurements would be impractical. In contrast, emittance values and corrections for one-color pyrometers can be accurately measured by the polarized light technique. The polarized light technique involves measurement of the degree of polarization for light emitted at an angle of 45 deg to the specimen normal. The reflectivities (r) for light polarized parallel (p) and normal (n) to the plane of emission are related by r(p) = r(n) squared. This leads to a simple relation between the intensity ratio for light emitted in the two polarized states and the emittance, i.e., e(n) = 2 - I(p)/I(n). The true specimen temperature is also obtained if absolute intensities are measured. Delvelopment of the polarized light technique in combination with one-color optical pyrometry is recommended to achieve accurate non-contact temperature measurements on liquids

    Laser assisted fiber growth

    Get PDF
    A method of making pure fibers from a parent material utilizing laser energy. A short wavelength laser is used to achieve a diffraction limited focal spot diameter that is smaller than the diameter of the growing fiber. Focused laser beam convergence is used to obtain a fiber growth rate that depends on the fiber tip portion such that the fiber growth rate achieves a value equal to the controlled fiber pulling rate. The present invention achieves vapor-liquid-solid growth of single crystal silicon fibers and whiskers from silane gas and permits the use of other materials in the production of fibers by the vapor-liquid-solid process. The method provides an increase in the allowable ambient pressure and growth temperature and a large and more energy efficient growth velocity as compared to carbon dioxide based laser beam technology

    Containerless high temperature property measurements by atomic fluorescence

    Get PDF
    Containerless high temperature processing and material property measurements are discussed. Researchers developed methods for non-contact suspension, heating, and property measurement for materials at temperatures up to 3,680K, the melting point of tungsten. New, scientifically interesting results were obtained in Earth-based research. These results and the demonstration of new methods and techniques form a basis for further advances under the low gravity environment of space where containerless conditions are more easily achieved. Containerless high temperature material property investigations that have been completed in this and our earlier projects include measurements of fluorine LaB sub 6 reaction kinetics at 1,000 to 1,500K; optical property measurements on sapphire (Al2O3) at temperatures up to the melting point (2,327K); and vapor pressure measurements for LaB sub 6 at 2,000 to 2,500K, for molybdenum up to 2,890K and for tungsten up to 3,680K. Gas jet levitation which is applicable to any solid material, and electromagnetic levitation of electrical conductors were used to suspend the materials of interest. Non-contact heating and property measurements were achieved by optical techniques, i.e., laser heating, laser induced fluorescence measurements of vapor concentrations, and optical pyrometry for specimen temperatures

    Laser assisted fiber growth

    Get PDF
    Small diameter fibers formed from the use of laser energy and gaseous reactants and are disclosed. Also disclosed is an apparatus and method for the formation of continuous, substrate free, crystalline or amorphous fibers. Materials which can be formed into small diameter fibers include boron, silicon, germanium, zinc, tungsten, cadium, gallium, thenium, and compounds and mixtures thereof. The fibers have a diameter of about 10 micrometers to about 170 micrometers. The apparatus for producing the fibers includes a laser, a reaction chamber, and gas supply means. The laser beam has a focal point adjusted to coincide with the tip of the growing fiber, the focal point of the laser creating a region of elevated temperature at the fiber tip

    Boron fibers having improved tensile strength

    Get PDF
    The invention is a continuous, substrate-free fiber comprising amorphous boron having a tensile strength ranging from about 750 kpsi to over 1000 kpsi, and a diameter which may be varied with the number or diffraction limited laser focal spot size to provide fiber diameter as small as 0.01 micron

    The study of excited oxygen molecule gas species production and quenching on thermal protection system materials

    Get PDF
    The detection of excited oxygen and ozone molecules formed by surface catalyzed oxygen atom recombination and reaction was investigated by laser induced fluorescence (LIF), molecular beam mass spectrometric (MBMS), and field ionization (FI) techniques. The experiment used partially dissociated oxygen flows from a microwave discharge at pressures in the range from 60 to 400 Pa or from an inductively coupled RF discharge at atmospheric pressure. The catalyst materials investigated were nickel and the reaction cured glass coating used for Space Shuttle reusable surface insulation tiles. Nonradiative loss processes for the laser excited states makes LIF detection of O2 difficult such that formation of excited oxygen molecules could not be detected in the flow from the microwave discharge or in the gaseous products of atom loss on nickel. MBMS experiments showed that ozone was a product of heterogeneous O atom loss on nickel and tile surfaces at low temperatures and that ozone is lost on these materials at elevated temperatures. FI was separately investigated as a method by which excited oxygen molecules may be conveniently detected. Partial O2 dissociation decreases the current produced by FI of the gas

    Optical properties and emissivities of liquid metals and alloys

    Get PDF
    This paper presents the results from our on-going program to investigate the optical properties of liquid metals and alloys at elevated temperatures. Ellipsometric and polarimetric techniques have been used to investigate the optical properties of materials in the 1000 - 3000 K temperature range and in the 0.3 - 0.1 mu m wavelength range. The ellipsometric and polarimetric techniques are described and the characteristics of the instruments are presented. The measurements are conducted by reflecting a polarized laser beam from an electromagnetically levitated liquid metal or alloy specimen. A Rotating Analyzer Ellipsometer (RAE) or a four-detector Division-of-Amplitude Photopolarimeter (DOAP) is used to determine the polarimetric properties of the light reflected at an angle of incidence of approximately 68 deg. Optical properties of the specimen which are calculated from these measurements include the index of refraction, extinction coefficient, normal spectral emissivity, and spectral hemispherical emissivity. These properties have been determined at various wavelengths and temperatures for liquid Ag, Al, Au, Cu, Nb, Ni, Pd, Pt, Si, Ti, Ti-Al alloys, U, and Zr. We also describe new experiments using pulsed-dye laser spectroscopic ellipsometry for studies of the wavelength dependence of the emissivities and optical properties of materials at high temperature. Preliminary results are given for liquid Al. The application of four-detector polarimetry for rapid determination of surface emissivity and true temperature is also described. Characteristics of these devices are presented. An example of the accuracy of this instrument in measurements of the melting point of zirconium is illustrated

    Containerless processing of amorphous ceramics

    Get PDF
    The absence of gravity allows containerless processing of materials which could not otherwise be processed. High melting point, hard materials such as borides, nitrides, and refractory metals are usually brittle in their crystalline form. The absence of dislocations in amorphous materials frequently endows them with flexibility and toughness. Systematic studies of the properties of many amorphous materials have not been carried out. The requirements for their production is that they can be processed in a controlled way without container interaction. Containerless processing in microgravity could permit the control necessary to produce amorphous forms of hard materials

    Containerless high temperature property measurements

    Get PDF
    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique
    corecore