4 research outputs found

    Reproducibility of optical coherence tomography in vein grafts used for coronary revascularization

    Get PDF
    Background: Optical coherence tomography (OCT) is a high-resolution imaging modality able to provide near-histological images of vessel walls making it possible to distinguish intima and media layers of the vessel wall separately. The use of this imaging technique is increasing while data on the variability and reliability is lacking. The aim of this study was to investigate the reproducibility of frequency-domain OCT in vein grafts used for coronary revascularization.Methods: Five pullbacks were analyzed by the same analyst with a 1-month delay (intraobserver) and by two different analysts (interobserver). Five pairs of pullbacks from the same catheters and vein graft were also analyzed (inter pullback).Results: Optical coherence tomography showed low variability in intra- and interobserver analysis with relative differences of mean media and intima thicknesses and areas of less than 5% for most parameters.Relative differences of the same parameters in the inter pullback analysis were in the 5–15% range. Intra- and interobserver reliability was excellent (intraclass correlation coefficient [ICC] > 0.90) for intima thickness and intima, media and intima-media area measurements. Inter pullback reliability was good (ICC: 0.75–0.90) for intima and intima-media area measurements, and moderate to good for mean intima thickness measurements (ICC: 0.79; 0.7338–0.8284).Conclusions: Optical coherence tomography provides good reproducibility for the measurements of parameters relevant for the development of atherosclerosis in vein grafts.Clinical trial registration: ID NCT01834846

    Cardiac power integral: a new method for monitoring cardiovascular performance

    No full text
    Cardiac power (PWR) is the continuous product of flow and pressure in the proximal aorta. Our aim was to validate the PWR integral as a marker of left ventricular energy transfer to the aorta, by comparing it to stroke work (SW) under multiple different loading and contractility conditions in subjects without obstructions in the left ventricular outflow tract. Six pigs were under general anesthesia equipped with transit time flow probes on their proximal aortas and Millar micromanometer catheters in their descending aortas to measure PWR, and Leycom conductance catheters in their left ventricles to measure SW. The PWR integral was calculated as the time integral of PWR per cardiac cycle. SW was calculated as the area encompassed by the pressure– volume loop (PV loop). The relationship between the PWR integral and SW was tested during extensive mechanical and pharmacological interventions that affected the loading conditions and myocardial contractility. The PWR integral displayed a strong correlation with SW in all pigs (R2 > 0.95, P < 0.05) under all conditions, using a linear model. Regression analysis and Bland Altman plots also demonstrated a stable relationship. A mixed linear analysis indicated that the slope of the SW-to-PWR-integral relationship was similar among all six animals, whereas loading and contractility conditions tended to affect the slope. The PWR integral followed SW and appeared to be a promising parameter for monitoring the energy transferred from the left ventricle to the aorta. This conclusion motivates further studies to determine whether the PWR integral can be evaluated using less invasive methods, such as echocardiography combined with a radial artery catheter

    Minimally invasive beat-by-beat monitoring of cardiac power in normal hearts and during acute ventricular dysfunction

    No full text
    Cardiac power, the product of aortic flow and blood pressure, appears to be a fundamental cardiovascular parameter. The simplified version named cardiac power output (CPO), calculated as the product of cardiac output (CO) in L/min and mean arterial pressure (MAP) in mmHg divided by 451, has shown great ability to predict outcome in a broad spectrum of cardiac disease. Beat-by-beat evaluation of cardiac power (PWR) therefore appears to be a possibly valuable addition when monitoring circulatory unstable patients, providing parameters of overall cardiovascular function. We have developed a minimally invasive system for cardiac power measurement, and aimed in this study to compare this system to an invasive method (ttPWR). Seven male anesthetized farm pigs were included. A laptop with in-house software gathered audio from Doppler signals of aortic flow and blood pressure from the patient monitor to continuously calculate and display a minimally invasive cardiac power trace (uPWR). The time integral per cardiac cycle (uPWR-integral) represents cardiac work, and was compared to the invasive counterpart (ttPWR-integral). Signals were obtained at baseline, during mechanically manipulated preload and afterload, before and after induced global ischemic left ventricular dysfunction. We found that the uPWR-integral overestimated compared to the ttPWR-integral by about 10% (P < 0.001) in both normal hearts and during ventricular dysfunction. Bland-Altman limits of agreement were at +0.060 and -0.054 J, without increasing spread over the range. In conclusion we find that the minimally invasive system follows its invasive counterpart, and is ready for clinical research of cardiac power parameters
    corecore