8 research outputs found

    Osmotic Stress Blocks Mobility and Dynamic Regulation of Centriolar Satellites

    Get PDF
    Centriolar satellites (CS) are small proteinaceous granules that cluster around the centrosome and serve as cargo vehicles for centrosomal proteins. It is generally accepted that CS support a number of canonical and specialized centrosome functions. Consequently, these highly dynamic structures are the target of regulation by several cellular signalling pathways. Two decades of research have led to the identification of a large number of molecular components and new biological roles of CS. Here, we summarize the latest advances in the continuous efforts to uncover the compositional, functional, dynamic and regulatory aspects of CS. We also report on our discovery that osmotic stress conditions render CS immobile and insensitive to remodelling. Upon a range of p38-activating stimuli, MK2 phosphorylates the CS component CEP131, resulting in 14-3-3 binding and a block to CS formation. This normally manifests as a rapid cellular depletion of satellites. In the case of osmotic stress, a potent inducer of p38 activity, CS translocation and dissolution is blocked, with the net result that satellites persist in an immobile state directly adjacent to the centrosome. Our results highlight a unique scenario where p38 activation and CS depletion is uncoupled, with potential implications for physiological and pathological osmotic stress responses

    Metallopeptidase Inhibitor 1 (TIMP-1) promotes receptor tyrosine kinase c-Kit signaling in colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is the third most prevalent cancer worldwide causing an estimated 700 000 deaths annually. Different types of treatment are available for patients with advanced metastatic colorectal cancer, including targeted biological agents, such as cetuximab, a monoclonal antibody that targets EGFR. We have previously reported a study indicating multiple levels of interaction between metallopeptidase inhibitor 1 (TIMP-1) and the epidermal growth factor (EGF) signaling axis, which could explain how TIMP-1 levels can affect the antitumor effects of EGFR inhibitors. We also reported an association between TIMP-1-mediated cell invasive behavior and KRAS status. To gain insight into the molecular mechanisms underlying the effects of TIMP-1 in CRC, we examined by transcriptomics, proteomics, and kinase activity profiling a matched pair of isogenic human CRC isogenic DLD-1 CRC cell clones, bearing either an hemizygous KRAS wild-type allele or KRAS G13D mutant allele, exposed, or not, to TIMP-1. Omics analysis of the two cell lines identified the receptor tyrosine kinase c-Kit, a proto-oncogene that can modulate cell proliferation and invasion in CRC, as a target for TIMP-1. We found that exposure of DLD-1 CRC cells to exogenously added TIMP-1 promoted phosphorylation of c-Kit, indicative of a stimulatory effect of TIMP-1 on the c-Kit signaling axis. In addition, TIMP-1 inhibited c-Kit shedding in CRC cells grown in the presence of exogenous TIMP-1. Given the regulatory roles that c-Kit plays in cell proliferation and migration, and the realization that c-Kit is an important oncogene in CRC, it is likely that some of the biological effects of TIMP-1 overexpression in CRC may be exerted through its effect on c-Kit signaling

    ZAK beta is activated by cellular compression and mediates contraction-induced MAP kinase signaling in skeletal muscle

    Get PDF
    Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAK beta is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKO's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.Peer reviewe

    Regulation of the golgi apparatus by p38 and JNK kinases during cellular stress responses

    No full text
    p38 and c-Jun N-terninal kinase (JNK) are activated in response to acute stress and inflammatory signals. Through modification of a plethora of substrates, these kinases profoundly re-shape cellular physiology for the optimal response to a harmful environment and/or an inflammatory state. Here, we utilized phospho-proteomics to identify several hundred substrates for both kinases. Our results indicate that the scale of signaling from p38 and JNK are of a similar magnitude. Among the many new targets, we highlight the regulation of the transcriptional regulators grb10-interacting GYF protein 1 and 2 (GIGYF1/2) by p38-dependent MAP kinase-activated protein kinase 2 (MK2) phosphorylation and 14–3–3 binding. We also show that the Golgi apparatus contains numerous substrates, and is a major target for regulation by p38 and JNK. When activated, these kinases mediate structural rearrangement of the Golgi apparatus, which positively affects protein flux through the secretory system. Our work expands on our knowledge about p38 and JNK signaling with important biological ramifications
    corecore