30 research outputs found

    Hepatitis E virus genotype 3 strains and a plethora of other viruses detected in raw and still in tap water

    Get PDF
    \ua9 2019 The Authors In this study, next generation sequencing was used to explore the virome in 20L up to 10,000L water from different purification steps at two Swedish drinking water treatment plants (DWTPs), and in tap water. One DWTP used ultrafiltration (UF) with 20 nm pores, the other UV light treatment after conventional treatment of the water. Viruses belonging to 26 different families were detected in raw water, in which 6–9 times more sequence reads were found for phages than for known environmental, plant or vertebrate viruses. The total number of viral reads was reduced more than 4-log10 after UF and 3-log10 over UV treatment. However, for some viruses the reduction was 3.5-log10 after UF, as for hepatitis E virus (HEV), which was also detected in tap water, with sequences similar to those in raw water and after treatment. This indicates that HEV had passed through the treatment and entered into the supply network. However, the viability of the viruses is unknown. In tap water 10–130 International Units of HEV RNA/mL were identified, which is a comparable low amount of virus. The risk of getting infected through consumption of tap water is probably negligible, but needs to be investigated. The HEV strains in the waters belonged to subtypes HEV3a and HEV3c/i, which is associated with unknown source of infection in humans infected in Sweden. None of these subtypes are common among pigs or wild boar, the major reservoirs for HEV, indicating that water may play a role in transmitting this virus. The results indicate that monitoring small fecal/oral transmitted viruses in DWTPs may be considered, especially during community outbreaks, to prevent potential transmission by tap water

    Etiology and Viral Genotype in Patients with End-Stage Liver Diseases admitted to a Hepatology Unit in Colombia

    Get PDF
    Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are the principal risk factor associated to end-stage liver diseases in the world. A study was carried out on end-stage liver disease cases admitted to an important hepatology unit in Medellin, the second largest city in Colombia. From 131 patients recruited in this prospective study, 71% of cases were diagnosed as cirrhosis, 12.2% as HCC, and 16.8% as cirrhosis and HCC. Regarding the risk factors of these patients, alcohol consumption was the most frequent (37.4%), followed by viral etiology (17.6%). Blood and/or hepatic tissue samples from patients with serological markers for HCV or HBV infection were characterized; on the basis of the phylogenetic analysis of HCV 5′ UTR and HBV S gene, isolates belonged to HCV/1 and HBV/F3, respectively. These results confirm the presence of strains associated with poor clinical outcome, in patients with liver disease in Colombia; additionally, HBV basal core promoter double mutant was identified in HCC cases. Here we show the first study of cirrhosis and/or HCC in Colombian and HBV and HCV molecular characterization of these patients. Viral aetiology was not the main risk factor in this cohort but alcohol consumption

    The UV Dose Used for Disinfection of Drinking Water in Sweden Inadequately Inactivates Enteric Virus with Double-Stranded Genomes

    Get PDF
    Irradiation with ultraviolet light (UV) at 254 nm is effective in inactivating a wide range of human pathogens. In Sweden, a UV dose of 400 J/m2 is often used for the treatment of drinking water. To investigate its effect on virus inactivation, enteric viruses with different genomic organizations were irradiated with three UV doses (400, 600, and 1000 J/m2), after which their viability on cell cultures was examined. Adenovirus type 2 (double-stranded DNA), simian rotavirus 11 (double-stranded RNA), and echovirus 30 (single-stranded RNA) were suspended in tap water and pumped into a laboratory-scale Aquada 1 UV reactor. Echovirus 30 was reduced by 3.6-log10 by a UV dose of 400 J/m2. Simian rotavirus 11 and adenovirus type 2 were more UV resistant with only 1-log10 reduction at 400 J/m2 and needed 600 J/m2 for 2.9-log10 and 3.1-log10 reductions, respectively. There was no significant increase in the reduction of viral viability at higher UV doses, which may indicate the presence of UV-resistant viruses. These results show that higher UV doses than those usually used in Swedish drinking water treatment plants should be considered in combination with other barriers to disinfect the water when there is a risk of fecal contamination of the water

    Serum-IgG responses to SARS-CoV-2 after mild and severe COVID-19 infection and analysis of IgG non-responders

    Get PDF
    Background To accurately interpret COVID-19 seroprevalence surveys, knowledge of serum-IgG responses to SARS-CoV-2 with a better understanding of patients who do not seroconvert, is imperative. This study aimed to describe serum-IgG responses to SARS-CoV-2 in a cohort of patients with both severe and mild COVID-19, including extended studies of patients who remained seronegative more than 90 days post symptom onset. Methods SARS-CoV-2-specific IgG antibody levels were quantified using two clinically validated and widely used commercial serological assays (Architect, Abbott Laboratories and iFlash 1800, YHLO), detecting antibodies against the spike and nucleocapsid proteins. Results Forty-seven patients (mean age 49 years, 38% female) were included. All (15/15) patients with severe symptoms and 29/32 (90.6%) patients with mild symptoms of COVID-19 developed SARS-CoV-2-specific IgG antibodies in serum. Time to seroconversion was significantly shorter (median 11 vs. 22 days, P= 0.04) in patients with severe compared to mild symptoms. Of the three patients without detectable IgG-responses after >90 days, all had detectable virus-neutralizing antibodies and in two, spike-protein receptor binding domain-specific IgG was detected with an in-house assay. Antibody titers were preserved during follow-up and all patients who seroconverted, irrespective of the severity of symptoms, still had detectable IgG levels >75 days post symptom onset. Conclusions Patients with severe COVID-19 both seroconvert earlier and develop higher concentrations of SARS-CoV-2-specific IgG than patients with mild symptoms. Of those patients who not develop detectable IgG antibodies, all have detectable virus-neutralizing antibodies, suggesting immunity. Our results showing that not all COVID-19 patients develop detectable IgG using two validated commercial clinical methods, even over time, are vital for the interpretation of COVID-19 seroprevalence surveys

    Seasonal Variation in TP53 R249S-Mutated Serum DNA with Aflatoxin Exposure and Hepatitis B Virus Infection

    Get PDF
    Background: Chronic hepatitis B virus (HBV) infection and dietary aflatoxin B1 (AFB1) exposure are etiological factors for hepatocellular carcinoma (HCC) in countries with hot, humid climates. HCC often harbors a TP53 (tumor protein p53) mutation at codon 249 (R249S). In chronic carriers, 1762T/1764A mutations in the HBV X gene are associated with increased HCC risk. Both mutations have been detected in circulating cell-free DNA (CFDNA) from asymptomatic HBV carriers

    Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion

    Get PDF
    Amassments of heterochromatin in somatic cells occur in close contact with the nuclear envelope (NE) but are gapped by channel- and cone-like zones that appear largely free of heterochromatin and associated with the nuclear pore complexes (NPCs). To identify proteins involved in forming such heterochromatin exclusion zones (HEZs), we used a cell culture model in which chromatin condensation induced by poliovirus (PV) infection revealed HEZs resembling those in normal tissue cells. HEZ occurrence depended on the NPC-associated protein Tpr and its large coiled coil-forming domain. RNAi-mediated loss of Tpr allowed condensing chromatin to occur all along the NE's nuclear surface, resulting in HEZs no longer being established and NPCs covered by heterochromatin. These results assign a central function to Tpr as a determinant of perinuclear organization, with a direct role in forming a morphologically distinct nuclear sub-compartment and delimiting heterochromatin distribution

    Molecular identification and characterization of two proposed new enterovirus serotypes, EV74 and EV75

    Get PDF
    Fil: Oberste, M. Steven. Centers for Disease Control and Prevention. Respiratory and Enteric Viruses Branch; Estados Unidos.Fil: Michele, Suzanne M. Centers for Disease Control and Prevention. Respiratory and Enteric Viruses Branch; Estados Unidos.Fil: Maher, Kaija. Centers for Disease Control and Prevention. Respiratory and Enteric Viruses Branch; Estados Unidos.Fil: Schnurr, David. California Department of Health Services. Viral and Rickettsial Disease Laboratory; Estados Unidos.Fil: Cisterna, Daniel. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Junttila, Nina. Swedish Institute for Disease Control. Department of Virology; Suecia.Fil: Uddin, Moyez. Institute of Public Health; Bangladesh.Fil: Chomel, Jean-Jacques. Centre National de Référence des Entérovirus; Francia.Fil: Lau, Chi-Shan. Queen Mary Hospital. Department of Health; China.Fil: Ridha, Walid. National Polio Laboratory; Irak.Fil: Al-Busaidy, Suleiman. Ministry of Health. Department of Laboratories; Oman.Fil: Norder, Helene. Swedish Institute for Disease Control. Department of Virology; Suecia.Fil: Magnius, Lars O. Swedish Institute for Disease Control. Department of Virology; Suecia.Fil: Pallansch, Mark A. Centers for Disease Control and Prevention. Respiratory and Enteric Viruses Branch; Estados Unidos.Sequencing of the gene that encodes the capsid protein VP1 has been used as a surrogate for antigenic typing in order to distinguish enterovirus serotypes; three new serotypes were identified recently by this method. In this study, 14 enterovirus isolates from six countries were characterized as members of two new types within the species Human enterovirus B, based on sequencing of the complete capsid-encoding (P1) region. Isolates within each of these two types differed significantly from one another and from all other known enterovirus serotypes on the basis of sequences that encode either VP1 alone or the entire P1 region. Members of each type were greater than or equal to 77(.)2% identical to one another (89(.)5% amino acid identity) in VP1, but members of the two different types differed from one another and from other enteroviruses by greater than or equal to 31% in nucleotide sequence (25% amino acid sequence difference), indicating that the two groups represent separate new candidate enterovirus types. The complete P1 sequences differed from those of all other enterovirus serotypes by greater than or equal to 31% (26% amino acid sequence difference), but were highly conserved within a serotype (< 8% amino acid sequence difference). Phylogenetic analyses demonstrated that isolates of the same serotype were monophyletic in both VP1 and the capsid as a whole, as shown previously for other enterovirus serotypes. This paper proposes that these 14 isolates should be classified as members of two new human enterovirus types, enteroviruses 74 and 75 (EV74 and EV75)

    Hepatitis B Virus Impairs TLR9 Expression and Function in Plasmacytoid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) play a key role in detecting pathogens by producing large amounts of type I interferon (IFN) by sensing the presence of viral infections through the Toll-Like Receptor (TLR) pathway. TLR9 is a sensor of viral and bacterial DNA motifs and activates the IRF7 transcription factor which leads to type I IFN secretion by pDCs. However, during chronic hepatitis B virus (HBV) infection, pDCs display an impaired ability to secrete IFN-α following ex vivo stimulation with TLR9 ligands. Here we highlight several strategies used by HBV to block IFN-α production through a specific impairment of the TLR9 signaling. Our results show that HBV particle internalisation could inhibit TLR9- but not TLR7-mediated secretion of IFN-α by pDCs. We observed that HBV down-regulated TLR9 transcriptional activity in pDCs and B cells in which TLR9 mRNA and protein levels were reduced. HBV can interfere with TLR9 activity by blocking the MyD88-IRAK4 axis and Sendai virus targeting IRF7 to block IFN-α production. Neutralising CpG motif sequences were identified within HBV DNA genome of genotypes A to H which displayed a suppressive effect on TLR9-immune activation. Moreover, TLR9 mRNA and protein were downregulated in PBMCs from patients with HBV-associated chronic hepatitis and hepatocellular carcinoma. Thus HBV has developed several escape mechanisms to avoid TLR9 activation in both pDCs and B lymphocytes, which may in turn contribute to the establishment and/or persistence of chronic infection

    Four novel picornaviruses detected in Magellanic Penguins (Spheniscus magellanicus) in Chile

    Get PDF
    Members of the Picornaviridae family comprise a significant burden on the poultry industry, causing diseases such as gastroenteritis and hepatitis. However, with the advent of metagenomics, a number of picornaviruses have now been revealed in apparently healthy wild birds. In this study, we identified four novel viruses belonging to the family Picornaviridae in healthy Magellanic penguins, a near threatened species. All samples were subsequently screened by RT-PCR for these new viruses, and approximately 20% of the penguins were infected with at least one of these viruses. The viruses were distantly related to members of the genera Hepatovirus, Tremovirus, Gruhelivirus and Crahelvirus. Further, they had more than 60% amino acid divergence from other picornaviruses, and therefore likely constitute novel genera. Our results demonstrate the vast undersampling of wild birds for viruses, and we expect the discovery of numerous avian viruses that are related to hepatoviruses and tremoviruses in the future
    corecore