688 research outputs found

    Convergence of a cell-centered finite volume discretization for linear elasticity

    Get PDF
    We show convergence of a cell-centered finite volume discretization for linear elasticity. The discretization, termed the MPSA method, was recently proposed in the context of geological applications, where cell-centered variables are often preferred. Our analysis utilizes a hybrid variational formulation, which has previously been used to analyze finite volume discretizations for the scalar diffusion equation. The current analysis deviates significantly from previous in three respects. First, additional stabilization leads to a more complex saddle-point problem. Secondly, a discrete Korn's inequality has to be established for the global discretization. Finally, robustness with respect to the Poisson ratio is analyzed. The stability and convergence results presented herein provide the first rigorous justification of the applicability of cell-centered finite volume methods to problems in linear elasticity

    Stable cell-centered finite volume discretization for Biot equations

    Get PDF
    In this paper we discuss a new discretization for the Biot equations. The discretization treats the coupled system of deformation and flow directly, as opposed to combining discretizations for the two separate sub-problems. The coupled discretization has the following key properties, the combination of which is novel: 1) The variables for the pressure and displacement are co-located, and are as sparse as possible (e.g. one displacement vector and one scalar pressure per cell center). 2) With locally computable restrictions on grid types, the discretization is stable with respect to the limits of incompressible fluid and small time-steps. 3) No artificial stabilization term has been introduced. Furthermore, due to the finite volume structure embedded in the discretization, explicit local expressions for both momentum-balancing forces as well as mass-conservative fluid fluxes are available. We prove stability of the proposed method with respect to all relevant limits. Together with consistency, this proves convergence of the method. Finally, we give numerical examples verifying both the analysis and convergence of the method

    Robust Discretization of Flow in Fractured Porous Media

    Get PDF
    Flow in fractured porous media represents a challenge for discretization methods due to the disparate scales and complex geometry. Herein we propose a new discretization, based on the mixed finite element method and mortar methods. Our formulation is novel in that it employs the normal fluxes as the mortar variable within the mixed finite element framework, resulting in a formulation that couples the flow in the fractures with the surrounding domain with a strong notion of mass conservation. The proposed discretization handles complex, non-matching grids, and allows for fracture intersections and termination in a natural way, as well as spatially varying apertures. The discretization is applicable to both two and three spatial dimensions. A priori analysis shows the method to be optimally convergent with respect to the chosen mixed finite element spaces, which is sustained by numerical examples

    Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems

    Get PDF
    In this paper we develop adaptive iterative coupling schemes for the Biot system modeling coupled poromechanics problems. We particularly consider the space-time formulation of the fixed-stress iterative scheme, in which we first solve the problem of flow over the whole space-time interval, then exploiting the space-time information for solving the mechanics. Two common discretizations of this algorithm are then introduced based on two coupled mixed finite element methods in-space and the backward Euler scheme in-time. Therefrom, adaptive fixed-stress algorithms are build on conforming reconstructions of the pressure and displacement together with equilibrated flux and stresses reconstructions. These ingredients are used to derive a posteriori error estimates for the fixed-stress algorithms, distinguishing the different error components, namely the spatial discretization, the temporal discretization, and the fixed-stress iteration components. Precisely, at the iteration k≥1k\geq 1 of the adaptive algorithm, we prove that our estimate gives a guaranteed and fully computable upper bound on the energy-type error measuring the difference between the exact and approximate pressure and displacement. These error components are efficiently used to design adaptive asynchronous time-stepping and adaptive stopping criteria for the fixed-stress algorithms. Numerical experiments illustrate the efficiency of our estimates and the performance of the adaptive iterative coupling algorithms

    Functional Analysis and Exterior Calculus on Mixed-Dimensional Geometries

    Get PDF
    We are interested in differential forms on mixed-dimensional geometries, in the sense of a domain containing sets of dd-dimensional manifolds, structured hierarchically so that each dd-dimensional manifold is contained in the boundary of one or more d+1d + 1 dimensional manifolds. On any given dd-dimensional manifold, we then consider differential operators tangent to the manifold as well as discrete differential operators (jumps) normal to the manifold. The combined action of these operators leads to the notion of a semi-discrete differential operator coupling manifolds of different dimensions. We refer to the resulting systems of equations as mixed-dimensional, which have become a popular modeling technique for physical applications including fractured and composite materials. We establish analytical tools in the mixed-dimensional setting, including suitable inner products, differential and codifferential operators, Poincar\'e lemma, and Poincar\'e--Friedrichs inequality. The manuscript is concluded by defining the mixed-dimensional minimization problem corresponding to the Hodge-Laplacian, and we show that this minimization problem is well-posed

    High-accuracy phase-field models for brittle fracture based on a new family of degradation functions

    Get PDF
    Phase-field approaches to fracture based on energy minimization principles have been rapidly gaining popularity in recent years, and are particularly well-suited for simulating crack initiation and growth in complex fracture networks. In the phase-field framework, the surface energy associated with crack formation is calculated by evaluating a functional defined in terms of a scalar order parameter and its gradients, which in turn describe the fractures in a diffuse sense following a prescribed regularization length scale. Imposing stationarity of the total energy leads to a coupled system of partial differential equations, one enforcing stress equilibrium and another governing phase-field evolution. The two equations are coupled through an energy degradation function that models the loss of stiffness in the bulk material as it undergoes damage. In the present work, we introduce a new parametric family of degradation functions aimed at increasing the accuracy of phase-field models in predicting critical loads associated with crack nucleation as well as the propagation of existing fractures. An additional goal is the preservation of linear elastic response in the bulk material prior to fracture. Through the analysis of several numerical examples, we demonstrate the superiority of the proposed family of functions to the classical quadratic degradation function that is used most often in the literature.Comment: 33 pages, 30 figure
    • …
    corecore