17 research outputs found

    Polyoma virus : polyadenylation and recombination

    Get PDF
    Imperial Users onl

    A Quantum-Mechanical Equivalent-Photon Spectrum for Heavy-Ion Physics

    Get PDF
    In a previous paper, we calculated the fully quantum-mechanical cross section for electromagnetic excitation during peripheral heavy-ion collisions. Here, we examine the sensitivity of that cross section to the detailed structure of the projectile and target nuclei. At the transition energies relevant to nuclear physics, we find the cross section to be weakly dependent on the projectile charge radius, and to be sensitive to only the leading momentum-transfer dependence of the target transition form factors. We exploit these facts to derive a quantum-mechanical ``equivalent-photon spectrum'' valid in the long-wavelength limit. This improved spectrum includes the effects of projectile size, the finite longitudinal momentum transfer required by kinematics, and the response of the target nucleus to the off-shell photon.Comment: 19 pages, 5 figure

    Spectral curves and the mass of hyperbolic monopoles

    Full text link
    The moduli spaces of hyperbolic monopoles are naturally fibred by the monopole mass, and this leads to a nontrivial mass dependence of the holomorphic data (spectral curves, rational maps, holomorphic spheres) associated to hyperbolic multi-monopoles. In this paper, we obtain an explicit description of this dependence for general hyperbolic monopoles of magnetic charge two. In addition, we show how to compute the monopole mass of higher charge spectral curves with tetrahedral and octahedral symmetries. Spectral curves of euclidean monopoles are recovered from our results via an infinite-mass limit.Comment: 43 pages, LaTeX, 3 figure

    Electromagnetic Dissociation of Nuclei in Heavy-Ion Collisions

    Get PDF
    Large discrepancies have been observed between measured Electromagnetic Dissociation(ED) cross sections and the predictions of the semiclassical Weiz\"acker-Williams-Fermi(WWF) method. In this paper, the validity of the semiclassical approximation is examined. The total cross section for electromagnetic excitation of a nuclear target by a spinless projectile is calculated in first Born approximation, neglecting recoil. The final result is expressed in terms of correlation functions and convoluted densities in configuration space. The result agrees with the WWF approximation to leading order(unretarded electric dipole approximation), but the method allows an analytic evaluation of the cutoff, which is determined by the details of the electric dipole transition charge density. Using the Goldhaber-Teller model of that density, and uniform charge densities for both projectile and target, the cutoff is determined for the total cross section in the nonrelativistic limit, and found to be smaller than values currently used for ED calculations. In addition, cross sections are calculated using a phenomenological momentum space cutoff designed to model final state interactions. For moderate projectile energies, the calculated ED cross section is found to be smaller than the semiclassical result, in qualitative agreement with experiment.Comment: 28 page
    corecore