78 research outputs found

    Simulating the impacts of climate change on ecosystems: the importance of mortality

    Get PDF
    Griffith Sciences, Griffith School of EnvironmentNo Full Tex

    Process-dependence of biogenic feedback effects in models of plankton dynamics.

    Get PDF
    The prospect of human-induced climate change has stimulated research into several biological processes that might affect climate. One such process that has attracted a substantial research effort is the so-called CLAW hypothesis (Charlson et al. 1987). This hypothesis suggests that marine plankton ecosystems may effectively regulate climate by a feedback associated with the production of dimethylsulphide (DMS). Charlson et al. (1987) observed that some of the DMS produced by marine ecosystems is transferred from the ocean to the atmosphere where it is the major source of cloud condensing nuclei (CCN) over the remote oceans. The aerosols resulting from biogenic DMS emissions can have a direct effect on the solar radiative forcing experienced by the Earth through scattering, absorption and reflection and can also lead to increased cloud formation; the CLAW hypothesis proposes that these mechanisms could regulate climate. Charlson et al (1987) argued that an increase in global temperature would lead to increased biogenic DMS emissions from the ocean and result in an increase in scattering, cloud cover and cloud albedo that would increase the proportion of the incoming solar radiation reflected back into space (thus changing the global albedo), and thereby cooling the planet. The objective of this paper is to examine the implications of the climate regulation process proposed by Charlson et al. (1987) for the dynamics of the ecosystems that produce it. Cropp et al. (2007) developed a simple plankton model that incorporated the DMS feedback mechanism and compared its dynamics to the same ecosystem model without the feedback. These simulations revealed that the presence of the feedback generally enhanced the stability of the ecosystem by making it more resilient to perturbation. In this research, we compare the effect of the feedbacks on a similar NPZ ecosystem model that has a greater range of dynamical behaviour than the model used by Cropp et al. (2007). The results of simulations with the new feedback model are compared to the results of Cropp et al. (2007) to elucidate the influence of the model formulation on the effects of the feedback

    Heavy ion beam lifetimes at relativistic and ultrarelativistic colliders

    Get PDF
    The effects of higher order corrections in ultra-relativistic nuclear collisions are considered. It is found that higher order contributions are small at low energy, large at intermediate energy and small again at very high energy. An explanation for this effect is given. This means that the Weizsacker-Williams formula is a good approximation to use in calculating cross sections and beam lifetimes at energies relevant to RHIC and LHC.Comment: 10 pages, 2 tables, 4 figure

    Modelling dimethylsulphide production at the Bermuda Atlantic time series (BATS)

    Get PDF
    Dimethylsulphide (DMS) is produced by upper ocean ecosystems and emitted to the atmosphere where it may have an important role in climate regulation. Several attempts to quantify the role of DMS in climate change have been undertaken in modeling studies. We examine a model of biogenic DMS production and describe its endogenous dynamics and sensitivities. We extend the model to develop a one-dimensional version that more accurately resolves the important processes of the mixed layer in determining the ecosystem dynamics. Comparisons of the results of the one-dimensional model with vertical profiles of DMS in the upper ocean measured at the Bermuda Atlantic Time Series suggest that the model represents the interaction between the biological and physical processes well. Our analysis of the model confirms its veracity and provides insights into the important processes determining DMS concentration in the oceans

    Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    Get PDF
    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data

    Differential Cross Sections for Proton-Proton Elastic Scattering

    Get PDF
    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models

    A Reference Field for GCR Simulation and an LET-Based Implementation at NSRL

    Get PDF
    Exposure to galactic cosmic rays (GCR) on long duration deep space missions presents a serious health risk to astronauts, with large uncertainties connected to the biological response. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment in the laboratory are discussed. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at the NASA Space Radiation Laboratory (NSRL) limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is within physical uncertainties, allowing a single reference field for deep space missions to be defined. Third, an approach for simulating the reference field at NSRL is presented. The approach allows for the linear energy transfer (LET) spectrum of the reference field to be approximately represented with discrete ion and energy beams and implicitly maintains a reasonably accurate charge spectrum (or, average quality factor). Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the proposed strategy are discussed in this context

    The 40 and 50 GHz propagation experiments at the Rutherford Appleton Laboratory, UK, using the ITALSAT beacons

    Get PDF
    This paper describes the current experimental program and future plans for the reception of transmissions from the 18.7, 39.6, and 49.5 GHz beacons from the ITALSAT satellite by the Radio Communications Research Unit at Rutherford Appleton Laboratory, UK. The Radio Communications Research Unit, which has had considerable experience in developing experimental millimetric equipment for propagation studies, has initiated the development of a single-channel receiver and a triple-channel receiver to measure propagation effects at 49.5 GHz and 39.6 GHz respectively. The initial location of the receivers will be at Chilbolton, Hampshire, UK

    Benchmark Analysis of Pion Contribution from Galactic Cosmic Rays

    Get PDF
    Shielding strategies for extended stays in space must include a comprehensive resolution of the secondary radiation environment inside the spacecraft induced by the primary, external radiation. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. A systematic verification and validation effort is underway for HZETRN, which is a space radiation transport code currently used by NASA. It performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. The question naturally arises as to what is the contribution of these particles to space radiation. The pion has a production kinetic energy threshold of about 280 MeV. The Galactic cosmic ray (GCR) spectra, coincidentally, reaches flux maxima in the hundreds of MeV range, corresponding to the pion production threshold. We present results from the Monte Carlo code MCNPX, showing the effect of lepton and meson physics when produced and transported explicitly in a GCR environment

    From Newton's Laws to the Wheeler-DeWitt Equation

    Get PDF
    This is a pedagogical paper which explains some ideas in cosmology at a level accessible to undergraduate students. It does not use general relativity, but uses the ideas of Newtonian cosmology worked out by Milne and McCrea. The cosmological constant is also introduced within a Newtonian framework. Following standard quantization procedures the Wheeler-DeWitt equation in the minisuperspace approximation is derived for empty and non-empty universes.Comment: 13 pages, 1 figur
    corecore