47 research outputs found
PHYSICAL ACTIVITY AND EXERCISE AS A KEY FACTOR IN SUCCESSFUL AGING
Aging is associated with several changes in body composition and metabolism, including sarcopenia, sarcopenic obesity and decrease in bone mass; aerobic capacity, muscle mass and strength tend to decline progressively. These changes have considerable impact on the ability to perform daily activities, especially when associated with chronic diseases, such as type 2 diabetes, cardio-vascular disease and dyslipidemia, as well as geriatric syndromes, like mobility impairment, falls and frailty. Scientific research has shown that physical activity and exercise can slow the physiological aging clock. Particularly, active elderly people seem to age "successfully" compared to sedentary ones. The aim of our work is to review evidence-based recommendations for physical activity, exercise and diet that would help to preserve muscle mass and strength, and to reduce the gain of fat mass in older adults. Increasing levels of physical activity, in particular resistance training mixed with aerobic exercise, and adequate protein nutrition intake should be an integral component in the prevention and treatment of sarcopenia, sarcopenic obesity and metabolic syndrome in elderly subjects
PPARγ Pro12Ala and ACE ID polymorphisms are associated with BMI and fat distribution, but not metabolic syndrome
<p>Abstract</p> <p>Background</p> <p>Metabolic Syndrome (MetS) results from the combined effect of environmental and genetic factors. We investigated the possible association of peroxisome proliferator-activated receptor-γ2 (PPARγ2) Pro12Ala and Angiotensin Converting Enzyme (ACE) I/D polymorphisms with MetS and interaction between these genetic variants.</p> <p>Methods</p> <p>Three hundred sixty four unrelated Caucasian subjects were enrolled. Waist circumference, blood pressure, and body mass index (BMI) were recorded. Body composition was estimated by impedance analysis; MetS was diagnosed by the NCEP-ATPIII criteria. A fasting blood sample was obtained for glucose, insulin, lipid profile determination, and DNA isolation for genotyping.</p> <p>Results</p> <p>The prevalence of MetS did not differ across PPARγ2 or ACE polymorphisms. Carriers of PPARγ2 Ala allele had higher BMI and fat-mass but lower systolic blood pressure compared with Pro/Pro homozygotes. A significant PPARγ2 gene-gender interaction was observed in the modulation of BMI, fat mass, and blood pressure, with significant associations found in women only. A PPARγ2-ACE risk genotype combination for BMI and fat mass was found, with ACE DD/PPARγ2 Ala subjects having a higher BMI (p = 0.002) and Fat Mass (p = 0.002). Pro12Ala was independently associated with waist circumference independent of BMI and gender.</p> <p>Conclusions</p> <p>Carriers of PPARγ2 Ala allele had higher BMI and fat-mass but not a worse metabolic profile, possibly because of a more favorable adipose tissue distribution. A gene interaction exists between Pro12Ala and ACE I/D on BMI and fat mass. Further studies are needed to assess the contribution of Pro12Ala polymorphism in adiposity distribution.</p
Leptin Deficiency Unmasks the Deleterious Effects of Impaired Peroxisome Proliferator–Activated Receptor γ Function (P465L PPARγ) in Mice
Peroxisome proliferator–activated receptor (PPAR)γ is a key transcription factor facilitating fat deposition in adipose tissue through its proadipogenic and lipogenic actions. Human patients with dominant-negative mutations in PPARγ display lipodystrophy and extreme insulin resistance. For this reason it was completely unexpected that mice harboring an equivalent mutation (P465L) in PPARγ developed normal amounts of adipose tissue and were insulin sensitive. This finding raised important doubts about the interspecies translatability of PPARγ-related findings, bringing into question the relevance of other PPARγ murine models. Here, we demonstrate that when expressed on a hyperphagic ob/ob background, the P465L PPARγ mutant grossly exacerbates the insulin resistance and metabolic disturbances associated with leptin deficiency, yet reduces whole-body adiposity and adipocyte size. In mouse, coexistence of the P465L PPARγ mutation and the leptin-deficient state creates a mismatch between insufficient adipose tissue expandability and excessive energy availability, unmasking the deleterious effects of PPARγ mutations on carbohydrate metabolism and replicating the characteristic clinical symptoms observed in human patients with dominant-negative PPARγ mutations. Thus, adipose tissue expandability is identified as an important factor for the development of insulin resistance in the context of positive energy balance
Computerized cognitive training and brain derived neurotrophic factor during bed rest: Mechanisms to protect individual during acute stress
Acute stress, as bed rest, was shown to increase plasma level of the neurotrophin brain-derived neurotrophic factor (BDNF) in older, but not in young adults. This increase might represent a protective mechanism towards acute insults in aging subjects. Since computerized cognitive training (CCT) is known to protect brain, herein we evaluated the effect of CCT during bed rest on BDNF, muscle mass, neuromuscular function and metabolic parameters. The subjects that underwent CCT did not show an increase of BDNF after bed rest, and showed an anti-insular modification pattern in metabolism. Neuromuscular function parameters, already shown to beneficiate from CCT, negatively correlated with BDNF in research participants undergoing CCT, while positively correlated in the control group. In conclusion, BDNF increase can be interpreted as a standardized protective mechanism taking place whenever an insult occurs; it gives low, but consistent preservation of neuromuscular function. CCT, acting as an external protective mechanism, seems to modify this standardized response, avoiding BDNF increase or possibly modifying its time course. Our results suggest the possibility of differential neuroprotective mechanisms among ill and healthy individuals, and the importance of timing in determining the effects of protective mechanism
Plasma 24S-hydroxycholesterol levels in elderly subjects with late onset Alzheimer's disease or vascular dementia: a case-control study
<p>Abstract</p> <p>Background</p> <p>In central nervous system cholesterol cannot be degraded but is secreted into circulation predominantly in the form of its polar metabolite 24(<it>S</it>)-hydroxycholesterol (24S-OH-Chol). Some studies suggested an association between 24S-OH-Chol metabolism and different neurological diseases including dementia. A possible decrease in 24S-OH-Chol plasma levels has been reported late onset Alzheimer's disease (LOAD) and vascular dementia (VD), but results of previous studies are partially contradictory.</p> <p>Methods</p> <p>By high-speed liquid chromatography/tandem mass spectrometry we evaluated the plasma levels of 24S-OH-Chol in a sample of 160 older individuals: 60 patients with LOAD, 35 patients with VD, 25 subjects affected by cognitive impairment no-dementia (CIND), and 40 (144 for genetics study) cognitively normal Controls. We also investigated the possible association between PPARgamma Pro12Ala polymorphism and dementia or 24S-OH-Chol levels.</p> <p>Results</p> <p>Compared with Controls, plasma 24S-OH-Chol levels were higher in LOAD and lower in VD; a slight not-significant increase in CIND was observed (ANOVA p: 0.001). A positive correlation between 24S-OH-Chol/TC ratio and plasma C reactive protein (CRP) levels was found in the whole sample, independent of possible confounders (multiple regression p: 0.04; r<sup>2</sup>: 0.10). This correlation was strong in LOAD (r: 0.39), still present in CIND (r: 0.20), but was absent in VD patients (r: 0.08). The PPARgamma Pro12Ala polymorphism was not associated with the diagnosis of LOAD, VD, or CIND; no correlation emerged between the Ala allele and 24S-OH-Chol plasma levels.</p> <p>Conclusions</p> <p>Our results suggest that plasma 24S-OH-Chol levels might be increased in the first stages of LOAD, and this phenomenon might be related with systemic inflammation. The finding of lower 24S-OH-Chol concentrations in VD might be related with a more advanced stage of VD compared with LOAD in our sample, and/or to different pathogenetic mechanisms and evolution of these two forms of dementia.</p
Refinement of the diagnostic approach for the identification of children and adolescents affected by familial hypercholesterolemia: Evidence from the LIPIGEN study
Background and aims: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age.Methods: From the Italian LIPIGEN cohort, we selected 1188 (>= 18 years) and 708 (<18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation.Results: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives.Conclusions: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age
Refinement of the diagnostic approach for the identification of children and adolescents affected by familial hypercholesterolemia: Evidence from the LIPIGEN study
Background and aims: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age. Methods: From the Italian LIPIGEN cohort, we selected 1188 (≥18 years) and 708 (<18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation. Results: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives. Conclusions: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age
A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease
Background: Mechanisms of myocardial ischemia in obstructive and non-obstructive coronary artery disease (CAD), and the interplay between clinical, functional, biological and psycho-social features, are still far to be fully elucidated. Objectives: To develop a machine-learning (ML) model for the supervised prediction of obstructive versus non-obstructive CAD. Methods: From the EVA study, we analysed adults hospitalized for IHD undergoing conventional coronary angiography (CCA). Non-obstructive CAD was defined by a stenosis < 50% in one or more vessels. Baseline clinical and psycho-socio-cultural characteristics were used for computing a Rockwood and Mitnitski frailty index, and a gender score according to GENESIS-PRAXY methodology. Serum concentration of inflammatory cytokines was measured with a multiplex flow cytometry assay. Through an XGBoost classifier combined with an explainable artificial intelligence tool (SHAP), we identified the most influential features in discriminating obstructive versus non-obstructive CAD. Results: Among the overall EVA cohort (n = 509), 311 individuals (mean age 67 ± 11 years, 38% females; 67% obstructive CAD) with complete data were analysed. The ML-based model (83% accuracy and 87% precision) showed that while obstructive CAD was associated with higher frailty index, older age and a cytokine signature characterized by IL-1β, IL-12p70 and IL-33, non-obstructive CAD was associated with a higher gender score (i.e., social characteristics traditionally ascribed to women) and with a cytokine signature characterized by IL-18, IL-8, IL-23. Conclusions: Integrating clinical, biological, and psycho-social features, we have optimized a sex- and gender-unbiased model that discriminates obstructive and non-obstructive CAD. Further mechanistic studies will shed light on the biological plausibility of these associations. Clinical trial registration: NCT02737982