39 research outputs found

    The Identification of a Small Molecule Compound That Reduces HIV-1 Nef-Mediated Viral Infectivity Enhancement

    Get PDF
    Nef is a multifunctional HIV-1 protein that accelerates progression to AIDS, and enhances the infectivity of progeny viruses through a mechanism that is not yet understood. Here, we show that the small molecule compound 2c reduces Nef-mediated viral infectivity enhancement. When added to viral producer cells, 2c did not affect the efficiency of viral production itself. However, the infectivity of the viruses produced in the presence of 2c was significantly lower than that of control viruses. Importantly, an inhibitory effect was observed with Nef+ wild-type viruses, but not with viruses produced in the absence of Nef or in the presence of proline-rich PxxP motif-disrupted Nef, both of which displayed significantly reduced intrinsic infectivity. Meanwhile, the overexpression of the SH3 domain of the tyrosine kinase Hck, which binds to a PxxP motif in Nef, also reduced viral infectivity. Importantly, 2c inhibited Hck SH3-Nef binding, which was more marked when Nef was pre-incubated with 2c prior to its incubation with Hck, indicating that both Hck SH3 and 2c directly bind to Nef and that their binding sites overlap. These results imply that both 2c and the Hck SH3 domain inhibit the interaction of Nef with an unidentified host protein and thereby reduce Nef-mediated infectivity enhancement. The first inhibitory compound 2c is therefore a valuable chemical probe for revealing the underlying molecular mechanism by which Nef enhances the infectivity of HIV-1

    NXT1, a Novel Influenza A NP Binding Protein, Promotes the Nuclear Export of NP via a CRM1-Dependent Pathway

    No full text
    Influenza remains a serious worldwide public health problem. After infection, viral genomic RNA is replicated in the nucleus and packed into viral ribonucleoprotein, which will then be exported to the cytoplasm via a cellular chromosome region maintenance 1 (CRM1)-dependent pathway for further assembly and budding. However, the nuclear export mechanism of influenza virus remains controversial. Here, we identify cellular nuclear transport factor 2 (NTF2)-like export protein 1 (NXT1) as a novel binding partner of nucleoprotein (NP) that stimulates NP-mediated nuclear export via the CRM1-dependent pathway. NXT1-knockdown cells exhibit decreased viral replication kinetics and nuclear accumulated viral RNA and NP. By contrast, NXT1 overexpression promotes nuclear export of NP in a CRM1-dependent manner. Pull-down assays suggest the formation of an NXT1, NP, and CRM1 complex, and demonstrate that NXT1 binds to the C-terminal region of NP. These findings reveal a distinct mechanism for nuclear export of the influenza virus and identify the NXT1/NP interaction as a potential target for antiviral drug development

    Comparative analysis of seven viral nuclear export signals (NESs) reveals the crucial role of nuclear export mediated by the third NES consensus sequence of nucleoprotein (NP) in influenza A virus replication.

    No full text
    The assembly of influenza virus progeny virions requires machinery that exports viral genomic ribonucleoproteins from the cell nucleus. Currently, seven nuclear export signal (NES) consensus sequences have been identified in different viral proteins, including NS1, NS2, M1, and NP. The present study examined the roles of viral NES consensus sequences and their significance in terms of viral replication and nuclear export. Mutation of the NP-NES3 consensus sequence resulted in a failure to rescue viruses using a reverse genetics approach, whereas mutation of the NS2-NES1 and NS2-NES2 sequences led to a strong reduction in viral replication kinetics compared with the wild-type sequence. While the viral replication kinetics for other NES mutant viruses were also lower than those of the wild-type, the difference was not so marked. Immunofluorescence analysis after transient expression of NP-NES3, NS2-NES1, or NS2-NES2 proteins in host cells showed that they accumulated in the cell nucleus. These results suggest that the NP-NES3 consensus sequence is mostly required for viral replication. Therefore, each of the hydrophobic (Φ) residues within this NES consensus sequence (Φ1, Φ2, Φ3, or Φ4) was mutated, and its viral replication and nuclear export function were analyzed. No viruses harboring NP-NES3 Φ2 or Φ3 mutants could be rescued. Consistent with this, the NP-NES3 Φ2 and Φ3 mutants showed reduced binding affinity with CRM1 in a pull-down assay, and both accumulated in the cell nucleus. Indeed, a nuclear export assay revealed that these mutant proteins showed lower nuclear export activity than the wild-type protein. Moreover, the Φ2 and Φ3 residues (along with other Φ residues) within the NP-NES3 consensus were highly conserved among different influenza A viruses, including human, avian, and swine. Taken together, these results suggest that the Φ2 and Φ3 residues within the NP-NES3 protein are important for its nuclear export function during viral replication

    Huntingtin-Interacting Protein 1 Promotes Vpr-Induced G2 Arrest and HIV-1 Infection in Macrophages

    No full text
    Human immunodeficiency virus type 1 (HIV-1) modulates the host cell cycle. The HIV-1 accessory protein Vpr arrests the cell cycle at the G2 phase in dividing cells, and the ability of Vpr to induce G2 arrest is well conserved among primate lentiviruses. Additionally, Vpr-mediated G2 arrest likely correlates with enhanced HIV-1 infection in monocyte-derived macrophages. Here, we screened small-interfering RNA to reveal candidates that suppress Vpr-induced G2 arrest and identified Huntingtin-interacting protein 1 (HIP1) required for efficient G2 arrest. Interestingly, HIP1 was not essential for Vpr-induced DNA double-strand breaks, which are required for activation of the DNA-damage checkpoint and G2 arrest. Furthermore, HIP1 knockdown suppressed HIV-1 infection in monocyte-derived macrophages. This study identifies HIP1 as a factor promoting Vpr-induced G2 arrest and HIV-1 infection in macrophages

    Identification of novel SARS-CoV-2 RNA dependent RNA polymerase (RdRp) inhibitors:From in silico screening to experimentally validated inhibitory activity

    No full text
    The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has posed a serious threat to global health and the economy for over two years, prompting the need for development of antiviral inhibitors. Due to its vital role in viral replication, RNA-dependent RNA polymerase (RdRp) is a promising therapeutic target. Herein, we analyzed amino acid sequence conservation of RdRp across coronaviruses. The conserved amino acids at the catalytic binding site served as the ligand-contacting residues for in silico screening to elucidate possible resistant mutation. Molecular docking was employed to screen inhibitors of SARS-CoV-2 from the ZINC ChemDiv database. The top-ranked compounds selected from GOLD docking were further investigated for binding modes at the conserved residues of RdRp, and ten compounds were selected for experimental validation. Of which, three compounds exhibited promising antiviral activity. The most promising candidate showed a half-maximal effective concentration (EC(50)) of 5.04 µM. Molecular dynamics simulations, binding free-energy calculation and hydrogen bond analysis were performed to elucidate the critical interactions providing a foundation for developing lead compounds effective against SARS-CoV-2

    Summary of viral replication kinetics and nuclear localization of NES consensus sequence mutants.

    No full text
    a<p>% virus titer ± SD compared with WT at the 46 h of replication kinetic assay from the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0105081#pone-0105081-g001" target="_blank">Fig. 1C</a>.</p>b<p>No viral rescue by reverse genetics.</p>c<p>–, ±, + indicate no change, partial change, great change of NES mutant protein localization compared with WT from the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0105081#pone-0105081-g002" target="_blank">Fig. 2</a>.</p

    Construction and expression of NP-NES3 consensus sequence mutants.

    No full text
    <p>(A) NP-NES harboring mutations in individual or all Φ residues (leucine was replaced by alanine by site-directed mutagenesis). (B) Expression of wild-type NP and NP-NES3 mutants (Φ1, Φ2, Φ3, and Φ4) was compared by Western blotting with an anti-WSN Ab and an anti-actin MAb.</p
    corecore