7 research outputs found

    The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine

    Get PDF
    ABSTRACT Mesenchymal stem cells (MSCs) are adult multipotent cells that due to their ability to homing to damaged tissues and differentiate into specialized cells, are remarkable cells in the field of regenerative medicine. It's suggested that the predominant mechanism of MSCs in tissue repair might be related to their paracrine activity. The utilization of MSCs for tissue repair is initially based on the differentiation ability of these cells; however now it has been revealed that only a small fraction of the transplanted MSCs actually fuse and survive in host tissues. Indeed, MSCs supply the microenvironment with the secretion of soluble trophic factors, survival signals and the release of extracellular vesicles (EVs) such as exosome. Also, the paracrine activity of EVs could mediate the cellular communication to induce cell- differentiation/self-renewal. Recent findings suggest that EVs released by MSCs may also be critical in the physiological function of these cells. This review provides an overview of MSC-derived extracellular vesicles as a hopeful opportunity to advance novel cell-free therapy strategies that might prevail over the obstacles and risks associated with the use of native or engineered stem cells. EVs are very stable; they can pass the biological barriers without rejection and can shuttle bioactive molecules from one cell to another, causing the exchange of genetic information and reprogramming of the recipient cells. Moreover, extracellular vesicles may provide therapeutic cargo for a wide range of diseases and cancer therapy. Key Words: Mesenchymal Stem Cells, Extracellular vesicles, Exosome, Regenerative medicine

    Impact of atorvastatin loaded exosome as an anti-glioblastoma carrier to induce apoptosis of U87 cancer cells in 3D culture model

    Get PDF
    Exosomes (EXOs) are naturally occurring nanosized lipid bilayers that can be efficiently used as a drug delivery system to carry small pharmaceutical, biological molecules and pass major biological barriers such as the blood-brain barrier. It was hypothesized that EXOs derived from human endometrial stem cells (hEnSCs-EXOs) can be utilized as a drug carrier to enhance tumor-targeting drugs, especially for those have low solubility and limited oral bioactivity. In this study, atorvastatin (Ato) loaded EXOs (AtoEXOs) was prepared and characterized for its physical and biological activities in tumor growth suppression of 3 D glioblastoma model. The AtoEXOs were obtained in different methods to maximize drug encapsulation efficacy. The characterization of AtoEXOs was performed for its size, stability, drug release, and in vitro anti-tumor efficacy evaluated comprising inhibition of proliferation, apoptosis induction of tumor cells. Expression of apoptotic genes by Real time PCR, Annexin V/PI, tunnel assay was studied after 72 h exposing U87 cells where encapsulated in matrigel in different concentrations of AtoEXOs (5, 10 μM). The results showed that the prepared AtoEXOs possessed diameter ranging from 30�150 nm, satisfying stability and sustainable Ato release rate. The AtoEXOs was up taken by U87 and generated significant apoptotic effects while this inhibited tumor growth of U87 cells. Altogether, produced AtoEXOs formulation due to its therapeutic efficacy has the potential to be an adaptable approach to treat glioblastoma brain tumors. © 2020 The Author

    Impact of atorvastatin loaded exosome as an anti-glioblastoma carrier to induce apoptosis of U87 cancer cells in 3D culture model

    Get PDF
    Exosomes (EXOs) are naturally occurring nanosized lipid bilayers that can be efficiently used as a drug delivery system to carry small pharmaceutical, biological molecules and pass major biological barriers such as the blood-brain barrier. It was hypothesized that EXOs derived from human endometrial stem cells (hEnSCs-EXOs) can be utilized as a drug carrier to enhance tumor-targeting drugs, especially for those have low solubility and limited oral bioactivity. In this study, atorvastatin (Ato) loaded EXOs (AtoEXOs) was prepared and characterized for its physical and biological activities in tumor growth suppression of 3 D glioblastoma model. The AtoEXOs were obtained in different methods to maximize drug encapsulation efficacy. The characterization of AtoEXOs was performed for its size, stability, drug release, and in vitro anti-tumor efficacy evaluated comprising inhibition of proliferation, apoptosis induction of tumor cells. Expression of apoptotic genes by Real time PCR, Annexin V/PI, tunnel assay was studied after 72 h exposing U87 cells where encapsulated in matrigel in different concentrations of AtoEXOs (5, 10 μM). The results showed that the prepared AtoEXOs possessed diameter ranging from 30–150 nm, satisfying stability and sustainable Ato release rate. The AtoEXOs was up taken by U87 and generated significant apoptotic effects while this inhibited tumor growth of U87 cells. Altogether, produced AtoEXOs formulation due to its therapeutic efficacy has the potential to be an adaptable approach to treat glioblastoma brain tumors. © 2020 The Author

    Control of cellular adhesiveness in hyaluronic acid-based hydrogel through varying degrees of phenol moiety cross-linking

    No full text
    Current hyaluronic acid-based hydrogels often cause cytotoxicity to encapsulated cells and lack the adhesive property required for effective biomedical and tissue engineering applications. Provision of the cell-adhesive surface is an important requirement to improve its biocompatibility. An aqueous solution of hyaluronic acid possessing phenolic hydroxyl (HA-Ph) moieties is gellable via a horseradish peroxidase (HRP)-catalyzed oxidative cross-linking reaction. This study evaluates the effect of different degrees of cross-linked Ph moieties on cellular adhesiveness and proliferation on the resultant enzymatically cross-linked HA-Ph hydrogels. Mechanical characterization demonstrated that the compression force of engineered hydrogels could be tuned in the range of 0.05�35 N by changing conjugated Ph moieties in the precursor formulation. The water contact angle and water content show hydrophobicity of hydrogels increased with increasing content of cross-linked Ph groups. The seeded mouse embryo fibroblast-like cell line and human cervical cancer cell line, on the HA-Ph hydrogel, proved cell attachment and spreading with a high content of cross-linked Ph groups. The HA-Ph with a higher degree of Ph moieties shows the maximum degree of cell adhesion, spreading, and proliferation which presents this hydrogel as a suitable biomaterial for biomedical and tissue engineering applications. © 2020 Wiley Periodicals LLC

    Impact of exosome-loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model

    No full text
    Combat or burn injuries are associated with a series of risks, such as microbial infection, an elevated level of inflammatory response, and pathologic scar tissue formation, which significantly postpone wound healing and also lead to impaired repair. Skin engineering for wound healing requires a biomimetic dressing substrate with ideal hydrophilicity, holding antioxidant and antimicrobial properties. In addition, available bioactive specification is required to reduce scar formation, stimulate angiogenesis, and improve wound repair. In this study, we successfully fabricated chitosan (Ch)–based hydrogel enriched with isolated exosome (EXO) from easy-accessible stem cells, which could promote fibroblast cell migration and proliferation in vitro. Full-thickness excisional wound model was used to investigate the in vivo dermal substitution ability of the fabricated hydrogel composed Ch and EXO substrates. Our finding confirmed that the wounds covered with Ch scaffold containing isolated EXO have nearly 83.6 wound closure ability with a high degree of re-epithelialization, whereas sterile gauze showed 51.5 of reduction in wound size. In summary, obtained results imply that Ch-glycerol-EXO hydrogel construct can be utilized at the full-thickness skin wound substitution and skin tissue engineering. © 2020 Wiley Periodicals LLC

    Extracellular micro/nanovesicles rescue kidney from ischemia-reperfusion injury

    No full text
    Acute renal failure (ARF) is a clinical challenge that is highly resistant to treatment, and its high rate of mortality is alarming. Ischemia�reperfusion injury (IRI) is the most common cause of ARF. Especially IRI is implicated in kidney transplantation and can determine graft survival. Although the exact pathophysiology of renal IRI is unknown, the role of inflammatory responses has been elucidated. Because mesenchymal stromal cells (MSCs) have strong immunomodulatory properties, they are under extensive investigation as a therapeutic modality for renal IRI. Extracellular vesicles (EVs) play an integral role in cell-to-cell communication. Because the regenerative potential of the MSCs can be recapitulated by their EVs, the therapeutic appeal of MSC-derived EVs has dramatically increased in the past decade. Higher safety profile and ease of preservation without losing function are other advantages of EVs compared with their producing cells. In the current review, the preliminary results and potential of MSC-derived EVs to alleviate kidney IRI are summarized. We might be heading toward a cell-free approach to treat renal IRI. © 2018 Wiley Periodicals, Inc
    corecore