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ABSTRACT 

Mesenchymal stem cells (MSCs) are adult multipotent cells that due to their ability to 

homing to damaged tissues and differentiate into specialized cells, are remarkable cells in the 

field of regenerative medicine.  It's suggested that the predominant mechanism of MSCs in 

tissue repair might be related to their paracrine activity. The utilization of MSCs for tissue 

repair is initially based on the differentiation ability of these cells; however now it has been 

revealed that only a small fraction of the transplanted MSCs actually fuse and survive in host 

tissues. Indeed, MSCs supply the microenvironment with the secretion of soluble trophic 

factors, survival signals and the release of extracellular vesicles (EVs)  such as exosome. 

Also, the paracrine activity of EVs could mediate the cellular communication to induce cell-

differentiation/self-renewal. Recent findings suggest that EVs released by MSCs may also be 

critical in the physiological function of these cells. This review provides an overview of 

MSC-derived extracellular vesicles as a hopeful opportunity to advance novel cell-free 

therapy strategies that might prevail over the obstacles and risks associated with the use of 

native or engineered stem cells. EVs are very stable; they can pass the biological barriers 

without rejection and can shuttle bioactive molecules from one cell to another, causing the 

exchange of genetic information and reprogramming of the recipient cells. Moreover, 

extracellular vesicles may provide therapeutic cargo for a wide range of diseases and cancer 

therapy. This article is protected by copyright. All rights reserved 
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1. Introduction 

  In the past few decades, regenerative medicine employed various types of human stem cells 

for treatment of injured, malfunctioning tissues and organs. emerging evidence have shown 

that stem cell therapies are a promising strategy to improve regeneration in damaged tissues 

such as heart, brain, spinal cord, liver (1) . In addition, stem cell therapies can be considered 

as a hopeful approach for irreversible diseases which there is not any treatment options at this 

moment. Regenerative medicine strategies include using stem cell differentiation ability to 

reconstruct missed or damaged tissues and organs by a safe, effective transfer methods (2).   

The regeneration potential of stem cells such as mesenchymal stromal cells (MSCs), induced 

pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) have established in order to 

restore human damaged tissues by means of secretion of growth factors, cytokines and 

extracellular vesicles. MSCs possess the particular advantages such as multi-lineage 

differentiation with immunomudulatory and immunosuppresion effects that make them as a 

safe effective stem cell-based therapy  in clinical setting (3). 

 Moreover, the paracrine activity of could account the regenerative ability of MSCs and one 

of the predominant components is extracellular vesicles (EVs) that possess the crucial role in 

their therapeutic potentialMSC-derived EVs therapy  display a desirable cell-free therapeutic 

option in regenerative medicine (4). EVs are naturally secreted membrane vesicles which 

referred to exosomes, microvesicles and apoptotic bodies. Mounting evidences show a great 

potential of EVs generated from MSCs as specific biomarkers for diagnosing, prognosis or 

prediction of diseases. Moreover, these vesicles can be used to treat many disorders through 

regenerative and immunoregulatory capacities or as a novel carrier in drug delivery systems 

to transfer drug agents or genetic materials (1, 5, 6). In this review, we aimed to discuss the 

beneficial therapeutic potentials of EVs for various diseases treatment.  

2. Mesenchymal stem cells and its phenotyping 

 A group of adult stem cells are MSCs which extensively studied as therapeutic tools in 

regenerative medicine. In 1968, Friedenstein and colleagues found this adult stem cells in the 

stromal compartment of bone marrow (7).  

The International Society for Cellular Therapy (ISCT) has considered the minimal criterion 

for multipotent human MSCs definition which include: (i) the adherent cells to plastic; (ii) the 

cells with fibroblast-like morphology which can differentiate under a certain stimulus into 

osteocytes, adipocytes and chondrocytes; (iii) positive expression of CD105, CD73 and 

CD90; negative expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19, and 

HLA-DR surface molecules (8-13). Human MSCs are also negative for CD4, CD8, CD11a, 

CD14, CD15, CD16, CD25, CD31, CD33, CD49b, CD49d, CD49f, CD50, CD62E, CD62L, 

CD62P, CD80, CD86, CD146 (vascular cell adhesion molecule [VCAM]-1), CD117, 

cadherin V, and glycophorin A, and positive for CD10, CD13, CD29 (b1-integrin), CD44, 

CD49e (a5-integrin), CD54 (intercellular adhesion molecule [ICAM]-1), CD58, CD71, 

CD146, CD166 (activated leukocyte cell adhesion molecule [ALCAM]), CD271, vimentin, 

cytokeratin (CK) 8, CK-18, nestin, and vonWillebrand factor (14) . Some surface markers are 

tissue specific for example; high levels of CD34 only express on adipose tissue-derived 

MSCs and CD27 could be found on bone marrow-derived MSCs. These criteria provide 

characteristics for MSC purification and their expansion by several-fold in-vitro, without 
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losing their differentiation capacity. Furthermore, colony-forming units of fibroblasts (CFU-

f) is another characteristic of MSCs that consist of  small colonies of low density plated cells 

which correspond to the progenitors that can differentiate into one of the mesenchymal cell 

lineages (15). MSCs have been used as the first kind of stem cells in clinical regenerative 

medicine after HSCs due to their easy isolation, rapidly ex vivo expansion, and also their 

autologous transplantation. These cells have other advantages including differentiation into 

multiple lineages, enhancing tissue repair, anti-inflammatory properties, and 

immunosuppression activities. Recently, the migration ability and incorporation of MSCs into 

specific tumors have been demonstrated in several different types of pre-clinical models 

which prove their potential as ideal anti-cancer agent’s carriers (10, 16). 

3. MSCs and immunomodulation 

 It's established that multipotent MSCs can differentiate into a wide variety of cells including 

mesodermal and non-mesodermal lineages. In addition to their differentiation potential, one 

of the best-explained  functional characteristics of MSCs is their immunoregulatory abilities 

(7). Though, the underlying mechanisms of MSC immunomodulation properties must be 

clarified. Numerous researches have provided data that show MSCs immunosuppression 

abilities. They can suppress proliferation of pre-stimulated T cell, differentiation of naïve T 

cells to effector cells, secretion of pro-inflammatory cytokines and also their cytotoxicity. 

MSCs have an ability to affect the cytokine secretion profile of T-cells, dendritic cells and 

macrophages. Furthermore, MSCs can regulate functions of regulatory T cells (Tregs), the 

balance of Th1/Th2 whereas they can suppress the function of other cells of the immune 

system. (17). Interleukin-2 (IL-2)-induced natural killer (NK) cell activation and the 

maturation, activation and antigen presentation of dendritic cells are suppressed by their 

immunomodulatory effects (16). MSCs express low level of complex class II (MHCII) and 

co-stimulatory molecules (B7-1and B7-2). They get involve with different types of the 

immune responses by means of cell-to-cell contacts. Besides, transforming growth factor-β1 

(TGF-β1), prostaglandin E2 (PGE2), hepatocyte growth factor (HGF), indoleamine-pyrrole 2, 

3-dioxygenase (IDO), nitric oxide (NO), matrix metalloproteinases, and interleukin 6 and 10 

have been considered as major modulator for MSCs immunosuppressive effects. Extensive 

proofs provide that interferon-γ  (IFN-γ), tumor necrosis factor-α (TNF-α), IL-1α or IL-1β 

which called inflammatory cytokine can mediate MSCs immunosuppressive activity through 

cyclooxygenase 2 (COX-2), PGE2 and IDO (18, 19). ProstaglandinE2 (PGE2)-derived MSCs 

suppress proliferation of T-cell and induce the T regulatory cells. IDO secreted by MSCs has 

been shown to suppress allogeneic T-cell responses and can induce tolerance after kidney 

allograft transplantation (20).it's published that MSCs heme oxygenase-1 plays an 

immunosuppresion role for suppression of T-cell proliferation and Toll-like receptor 

activation. HO-1activity can be regulated by iNOS and IDO. NO is another soluble factors 

that secrete by MSCs which involve in the T cell proliferation and STAT5 phosphorylation 

inhibition. Also, the proliferation of IL2–induced NK cells and the expression of NKp30 and 

NKG2D are inhibited via IDO and PGE2. Cell to cell contact is a main factor in MSCs 

immunomodulatory impacts. It's reported by Han et al that contact-dependent mechanisms 

may decrease the survival and proliferation of T cells whereas make increase the proportion 

of Tregs . IFN-γ upregulate MSCs Cell adhesion molecules secretion including CD274 (also 
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known as Programmed death ligand 1), vascular cell adhesion molecule-1 and galectin-1 

which are involved in cell to cell contact and the promotion of MSCs immunomodulation 

capacity. However, MSCs apply both direct cell to cell contact and soluble factors for their 

widely different regulation.  These capacities make them as a promising candidate to control 

host-versus graft (HvG) and graft versus host disease (GVHD) in BM transplantation (16, 17, 

21-23). 

 

4. MSC in regenerative medicine 

New and emerging terms in biotechnology and medicine are tissue engineering and 

regenerative medicine which employed to depict generation of complex tissues and organs 

from simpler pieces. Sever or chronic disease treatment by novel therapies is a gold main of 

this field (24). The “regenerative medicine” term is more concentrate on the utilizing stem 

cells as therapeutic tool and self-healing abilities. MSCs are the great opportunity in the field 

of stem cell therapy due to their appealing characteristics such as a: their wide ranging 

differentiation ability into tendons, bone, cartilage, ligaments, muscles, and neurons. B: their 

easy accessibility. C: The Straightforward isolation and their relatively fast large- scales 

expansion of MSCs in a short period of time through culture. d: human clinical trials by 

MSCs show a  satisfactory results of both allogeneic and autologous MSC transplants due to 

their immunomodulatory effects (14, 25) . It's cleared that culture-expanded MSCs did not 

express MHC class II cell surface markers, but rather only MHC class I and no co-stimulator 

molecules (26) . Thus, human MSCs could not present antigen and would evade from host’s 

immune system (27). These observations were used to proposed that MSCs could be used as 

a therapeutic tool in the regenerative medicine to repair damaged tissues because of different 

mechanisms, for example, differentiation into damaged cells, microenvironment repair with 

paracrine/juxtacrine effects of cytokines, soluble factors and growth factors or reorganization 

of extracellular matrix (28). Source of MSCs isolation may influence on therapeutic 

efficiency. For example, Human MSCs-derived adipose tissue (AT-MSCs) xeno-transplant 

improve angiogenesis and axonal regeneration and better functional recovery than BM-

MSCs. AT-MSCs induced high levels of neurotropic factors such as BDNF, VEGF, and HGF 

(29).oseteogenesis potential of MSCs have been extensively studied and have been applied in  

bone repair and regeneration. They employ to treat bone disorders as osteogenesis imperfecta 

(30, 31) and engineering of bone tissue together “scaffolds” (32). The mesenchymal 

precursors osteogenic benefits depends on their differentiation potential into osteoblast but 

also on their ability to produce growth factors and cytokines to the damaged tissues thereby 

promote the regeneration process (33). Apart from MSCs advantages in bone repair, they are 

also used to involve in treatment of cardio- vascular diseases. MSC-based cell therapy can 

repair heart injuries by the production of new cardiomyocytes (34). However, there is 

currently no clear agreement if MSCs have differentiation ability into cardiomyocytes and, if 

so, by which signals. Some experiments haves been shown that small proportions of 

transplanted MSCs remain in the target tissues (35). It is believed that MSCs positive effects 

on heart disorders consist of differentiation capacity into cardiomyocytes, the release of 

trophic factors and inflammatory suppression properties. MSCs are also exploited for 

neuronal injury and neurodegenerative diseases treatment such as Alzheimer , Parkinson and 

Huntington diseases by means of  MSCs ability to locally secrete high levels of brain-derived 
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neurotrophic factor (BDNF), nerve growth factor(NGF), vascular endothelial growth factor 

(VEGF) and hepatocyte growth factor (HGF), indeed the expression of these factors have 

been increased in vitro when MSCs are exposed to injured brain extracts (36). Moreover, the 

immune response modulation by MSCs is a key factor for neurodegenerative diseases 

treatment (37). Recently, there are two different opinions regarding the impact of MSCs on 

cancer which have no clear consequences. Some showed that MSCs have tumor tropism 

activity, immune suppression capabilities and could be considered as a novel candidate for 

cancer treatment. However, others believe that MSCs may promote tumor growth through 

promoting angiogenesis, creating a niche to support cancer stem cells survival, increasing 

formation of metastasis by modulation of the immune response against cancer cells (7). 

4.1. MSCs in cancer therapy 

Cancer, or malignant neoplasm (new tissue), has known as a global health problem of 

epidemic proportion. The conventional techniques of cancer therapies (surgery, 

chemotherapy or radiotherapy) do not handle their limitations such as cancer recurrence, 

metastasis following initial remission because of the lack of selectivity. Also, the final cancer 

therapy aim is to advance anticancer agents with precise specificity which strongly target 

tumor cells while sparing normal cells (38). Many adult stem cells (SCs) have been shown 

intrinsic tumour-tropic properties, proposing them as a considerable candidate for targeted 

cancer therapy strategies. These strategies divided into two separate parts which include their 

site-specific migration towards micro-metastatic lesions and another is their genetically 

modification to express or release different anti-cancer agents, thereby solve the short half-

life of chemotherapeutic agents (39). Maximizing the therapeutic impact of SC therapy 

require which they escape through immune system towards malignant sites to make their 

therapeutic effects (40). While the advantages of MSCs in regenerative medicine is relatively 

well-found, MSCs using in anti-cancer therapy is getting developing attention (40). In 1993, 

Maestroni et al discovered the ability of MSCs tumor tropism which has led to a good 

agreement of MSCs role as a therapeutic agent in tumors. The cellular and molecular 

mechanisms that underlie MSC migrate across endothelium and home to the target tissues are 

far from being completely understood (41). To date, stromal cell-derived factor SDF-1 and its 

receptor CXC chemokine receptor-4 (CXCR4) are the key mediators of stem cell homing to 

tumor sites. The unmodified MSC have been noticed to have anti-tumor effects both in vitro 

and in different mouse models of cancer by means of releasing factors with anti-tumor 

properties that decrease glioma proliferation, melanoma, lung cancer, hepatoma and breast 

cancer cells. The migrations of Human MSCs to tumorigenesis sites suppress tumor growth 

in a mouse model of Kaposi's sarcoma. The anti-angiogenic effects of MSCs have been 

reported in melanoma models. Direct injection of MSC into mice bearing melanoma induced 

appotosis of tumor cells (38, 42). Moreover, MSCs properties such as tumor tropism and 

immunity granted nature make them a perfect anti-cancer drug delivery approach. The 

engineered MSCs effects which possess anti-cancer genes such as IFN-ß, IL-12, IFN-α, IFN-

gamma, IL-2, NK4 and TRAIL have been explored in different cancer models(39). In other 

hand, MSCs tumor tropism can be employed for oncolytic viruses delivery to tumor 
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locations. Some studies described the positive anti-tumor effects of oncolytic viruses 

delivered by MSCs when they have been injected to tumor sites in animals (43, 44) . 

4.2. MSCs in neurodegenerative disease 

Stem cell-based therapy is considered a novel approach for neurodegenerative diseases. In 

spite of a small number of stem cells with limited regeneration capacity within some special 

areas such as subventricular zone (SVZ) of the lateral ventricle wall and the subgranular zone 

of the hippocampal dentate gyrus, neural stem cells are not so appropriate for 

neurodegenerative diseases treatment regarding their less accessibility.(45). However, neural 

stem cells are not easy accessible cells for neurodegenerative diseases treatment.  Previously, 

several studies defined MSCs regeneration potential, differentiation abilities into all mature 

neural cell types and their easily isolation and expansion. MSCs have differentiation ability 

into all mature neural cell types. Especially, MSCs obtain new morphological properties, 

specific neural markers, and electrophysiological properties in neural progenitor maintenance 

medium which represent of neural differentiation (46). MSCs limit CNS tissue damages in 

animal models or have a mediator role in CNS tissue repair via replacement of damaged cell 

by means of differentiation or trans-differentiation through their paracrine functions. Many 

studies disclosed that secretion of protective factors from the injection site may provide 

therapeutic effect of MSCs by several classes of molecules including growth factors, anti-

inflammatory and immunomodulatory chemokines of transplanted cells (47). Therefore, the 

stem cell replacement therapies investigations for neurodegenerative diseases treatment such 

as Alzheimer disease (AD), Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), and 

multiple sclerosis (MS) became developing interests in regenerative medicine. In Alzheimer, 

as the most common reasons of dementia, losing various types of neuronal lineage cells occur 

in response to the production of amyloid-β peptide (Aβ) plaques and neurofibrilary tangles in 

different parts of the brain which finally result in cognitive impairment and loss of memory.  

Since available drugs do not have any significant effect on this disease, finding the new 

treatments is a crucial need. The authors found out that brain-derived neurotrophic factor 

increases synapse density and improving AD cognition through its important impact upon 

neuron outgrowth and synapse formation.(48). In addition, scientists have observed a 

neuroprotective effect in hemopoietic growth factors such as granulocyte colony-stimulating 

factor (G-CSF), erythropoietin (EPO), granulocyte-macrophage colony-stimulating factor 

(GM-CSF), stem cell factor (SCF), vascular endothelial growth factor (VEGF), and stromal 

cell-derived factor-1-alpha (SDF-1-alpha) in ischemic stroke (49, 50). Lack of data in humans 

is the main problem appraising growth factors effect on neurodegenerative disease 

treatments, even though there are some promising information earned from animal model. 

Some hopeful results of MSCs therapy in patients with ischemic stroke have been reported by 

clinical trials which may explain their effect on increasing growth factors in AD patients in 

the future.(51). MSCs might also be considered a new therapeutic method for ALS that can 

provide or return function of motor neurons. It has been published that transplantation of 

MSCs resulting in their survival and migration towards lumbar spinal cord of SOD1G93A 

mice, astrogliosis inhibition, suppression of microglial activation and ALS-related decrease in 

the number of motor neurons, so cause to an amelioration of motor performance (52). 
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Parkinson is the second most common neurodegenerative disease which accompanies with 

loss of dopaminergic neurons in substantia nigra, and motor functions. Although some 

palliative treatments are used as the current treatments for this disease, the MSCs have also 

been proposed for protecting neural cell types. These treatments were used as a new way for 

PD treatment in a PD mouse model and it was shown that dopaminergic neurons and tyrosine 

hydroxlase-positive cells will survive after MSCs transplantation. (53). The morphology and 

differentiation of MSCs derived from PD patients are similar to normal MSCs. In addition, 

PD-derived MSCs can differentiate with certain stimuli into dopamine cells. Also, PD-

derived MSCs could suppress T cells proliferation which introduce MSCs as a promising cell 

for cell therapy (54). Pre-clinical experiments have been proposed that MSCs show also an 

effective therapy in animal models of myelin disease, such as multiple sclerosis, where MSCs 

might help to re-myelination and myelin recovery. Autologous naive BM-MSCs transplanted 

into PD in a pilot human study which followed for up to 36 months without any tumor 

formation evidences or side effects (45). Clinical studies of MSCs are a young field and there 

is a strong requirement to gather information related transplantation of MSCs and its efficacy. 

 

4.3. MSCs in cardiovascular disease 

Cardiovascular diseases (CVD) are considered as a serious problem which cause for one of 

the most leading mortality and morbidity worldwide. Despite the major improvement in 

cardiovascular diseases management it has failed to avoid myocardial scar formation and 

replacement of damaged cardiomyocyte mass with functional contractile cardiomyocyte. In 

the last decade, stem cell therapy for heart diseases has introduced as an alternative option for 

regeneration of lost cardiomyocytes and vascular endothelium in regenerative medicine. 

MSCs have been proven to be the most beneficial stem cells and their therapeutic 

applications for MI treatment is rising in comparison with other stem cells (55). Their 

outstanding characteristics including the ease of isolation from different tissues, possibility of 

their large-scale expansion, their differentiation ability into cardiomyocyte and vascular cells, 

their capability of homing towards the inflammation sites, their immunologically tolerance in 

recipient, the possibility of their systemically IV delivery without cardiac catheterization 

laboratories and the opportunity of using genetically modified MSCs to improve their 

engraftment or differentiation potentials make them a popular cell source (56) . It's revealed 

that MSCs express specific cardiac genes and show cardiomyocyte morphology and 

contractile activity on the exposure of 5-azacytidine. (24) . MSCs reduce the infract size and 

scar formation when implanted in an infracted heart and trigger myocyte regeneration. They 

exert their function via induction of vascular repair, angiogenesis, secretion of chemokines 

and ultimately stem cells homing. BM cells were administered for the first time for 

cardiomyoplasty in 1999 by Tomita et al. The autologous BM-MSCs injected 

intramyocardialy 3 weeks after cryoinjury. This cells home to injured sites and expressed 

muscle-specific proteins (57). Thereafter, various preclinical researches has been 

demonstrated left ventricular (LV) function improvement, reduction in infract size and 

mortality after MSCs transplantation in animal models such as mice, rats, swine, canine and 

sheep in acute or chronic MI (58). Schuleri et al designed a similar study through 
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intramyocardial MSC transplantation that showed LV function was increased. This result 

derived from improvement in myocardial blood flow and vessel size. The delivery methods 

and safety optimization are vital challenges of MSCs therapy in heart disorders. The majority 

of researchers have found that intramyocardial injection of progenitor cells in large animal 

models are safe and possible (59). On the other hand, dose relate investigations have found 

no directly results to date (60). furthermore, intramyocardial injections of high doses of 

allogenic MSCs have been displayed their safety in a swine  (61) and in another study 

reported that intravenous injection of MSCs altered the myocardium electrophysiological 

properties (62).  Although numerous studies have proven the beneficial effects of MSCs in 

heart regeneration, a number of publications have increased worries about tumor formation 

after BM-MSCs transplantation. The calcification and ossification is another serious concern 

of using MSCs and BM-MSCstem cells (63, 64). In contrast to these results, multi preclinical 

studies demonstrated their safety without any sign of tumor formation in large-animal models 

(65). According to this pre-clinical observation, some clinical trials have been done for heart 

injury treatment in patients. Some trials applied autologous bone marrow-derived 

mononuclear cells for MI treatment and reported that indicators of cardiac function have 

enhanced (66-68).  

 

4.4. MSCs in Respiratory diseases 

One of the serious health problems is lung diseases which lead to a high rate of mortality 

around the world.  Recently, treatment of lung diseases including chronic lung diseases, acute 

respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF) and chronic 

obstructive pulmonary disorder (COPD) faced obstacles and that there is no treatment option 

except lung transplantation (69). However, the rejection and immunosuppressive side effects 

remained as major problems of transplantation (70). The obstructive diseases avoid normal 

breathing by the fibrosis formation, airways or parenchyma inflammation and increase the 

resistance of airflow and compliance reduction. Also, chronic injuries disrupt the healing 

mechanisms lead to scar formation, fibrosis and loss of lung function  (71, 72). The present 

treatment strategies use current drugs, mechanical ventilation and transplantation for lung 

disease. In addition, scientists recently have focused on cell therapy as a new critical 

therapeutic option. Stem-cell based therapy is a promising substitution of transplantation for 

tissues or organ repair. MSCs have abilities to regulate immune systems, secrete some 

soluble factors such as growth factors and chemokines which allow them to play a key role in 

the decrease of inflammation, improving tissue repair and avoiding fibrosis through 

interactions with stromal and immune systems cells at in the damaged sites of the lung. The 

curative current treatment for acute lung diseases such as ARDS employs traditional fluid 

strategy (73) and ventilation protection methods but can't improve their mortality. Some 

investigations have been designed MSCs effectiveness on the endotoxin-induced ARDS 

animal models  (74). These studies proved that MSCs transplantation increases the survival 

rates through suppressing secretion of inflammatory cytokines such as IL-1β, TNF-α, and IL- 

6 (75, 76) and anti-inflammatory cytokines rising. Moreover, clinical trial results display 

MSCs therapy could decrease the C-reactive protein level in COPD patients. Emphysema is a 
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hallmark of chronic pulmonary obstructive disease which induced by vascular endothelial 

growth factor (VEGF) inactivation and also proinflammatory cytokines growing up (77). 

Thus, MSCs injection can be a great approach to treat chronic lung disease. Efficacy of 

MSCs therapy in IPF patients advanced its clinical trial phase, with multi incomplete trials 

that registered in “www.clinicaltrials.gov” and one completed trials in the phase I. Numerous 

animal models experiments have shown the MSC beneficial effects in the various lung 

disease that suggest they may have a good effects on Brochiolitis obliterans (BO) treatment. 

Also, their positive effects have been revealed to avoid rejection in heterotopic tracheal 

transplantation models. The excellent effects of stem cell therapy in animal models develop 

their application in human clinical trials as a novel treatment in different lung diseases (78, 

79). 

5. Limitation of stem cell therapy 

Regenerative medicine is using MSCs to treat a lot of disorders because of their great 

capabilities such as homing to injured and inflamed tissues, multi-lineage differentiation, and 

immunomodulatory effects on immune systems and even targeted-tumor therapy. There are 

some elusive problems which should be answered about the migration mechanisms of MSCs. 

It's understood that chemokines – chemokine receptors and MSCs adhesion molecules can 

improve the therapeutic strategies of ex-vivo expanded MSCs. Although, the safety and 

effectiveness of MSC therapy has been shown but still many aspects of their action 

mechanisms is not understood. However, there is an essential need to design studies of 

engraftment, homing and in vivo differentiation mechanisms and their long-term safety 

evaluation. MSC therapy makes some concerning challenges including their immune-related 

rejection, genetic instability, survival limitation and function restriction (82). Besides, these 

problems, tumor formation are a major issue of MSCs therapy in clinical applications.  The 

standard methods for ex-vivo expansion of MSCs, large-scale production, storage and 

distribution should be validated. The clinical-grade expansion needs a consistent expansion in 

vitro, which can increase risks of genetic instability and production of transformed cells (83). 

It’s investigated that upregulation of c-myc, expression of p-16 and telomerase activity may 

involve in MSCs transformation. Furthermore, genetic manipulation of MSCs raises their 

oncogenic potential because the transgene can disrupt the genome stability which has been 

demonstrated in some tumors such as gastric adenocarcinoma (84), lipoma (85) and 

osteosarcoma (86). In addition, novel-engineered tools for cell delivery to specific tissue 

should be produced such as cell-covered stents and catheter-based delivery in heart disease.  

In the light of these results, clinical MSCs should be exactly explored to make clear its 

cautionary challenges. 

 

6. MSCs release extracellular vesicles as a novel approach of cell free therapeutics 

 MSCs are believed to exhibit therapeutic impact through a different mechanism of actions in 

response to occurring tissue damage. They could be activated and also recruited to the site of 

injury by signal sensing due to their widespread perivascular niche. New studies demonstrate 

that MSCs could be contributed in regeneration via exhibition of two crucial function 
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“replacing of diseased cells” by differentiation to resident target progenitor cells or more 

recently “cell empowerment” something beyond cell to cell contact (80). Despite of low cell 

retention time within a few hours and also poor engraftment in target organ, satisfactory 

therapeutic results have been observed after cell transplantation in cell-based therapies (81-

84). Many investigators attribute therapeutic effect of MSCs mostly to their paracrine effect, 

particularly, through the secretion of extracellular vesicles (EVs) as medicinal cell-free 

products (85-96). Interestingly, uncovering the latest function of MSCs led to exploiting 

regenerative roles of MSC-derived EVs in regenerative medicine. Due to EV-carrying 

bioactive cargoes including nucleic acids, proteins, metabolites and lipids, by exchanging 

biological properties between cells, they could be involved in numerous normal physiological 

and also pathological conditions (97-100). Furthermore, EVs generated from MSCs have 

been reported as a targeted delivery vehicle through transferring of exogenous biological and 

chemical molecules in gene and cell-based therapeutics (85, 86). Recently, studies shows that 

EVs generated from MSCs could recapitulate their parent cell pleiotropic functions such as 

cell proliferation (101), anti-inflammatory and immunomudulatory (102, 103),  anti-fibrosis 

(86) and also anti-apoptosis (89) in preclinical studies and also translation to EV-based 

clinical trials (92) in a wide range of diseases. 

6.1. Extracellular vesicles: Exosomes and microvesicles 

Extracellular vesicles were firstly discovered during maturation of sheep reticulocytes (104). 

These nano-sized bilayer membranous vesicles are produced and secreted from various cell 

types, in particular, MSCs (100, 105-107). Recently, the interest in EV research has been 

exponentially raised and most of the efforts have been paid on understanding the beneficial 

function of MSC-derived EVs of other cell types. In order to harmonization and clarification 

of vesicle nomenclature and terminology, the International Society for Extracellular Vesicles 

(ISEV) in 2011 suggested “Extracellular vesicle” (EV) as a general term for all membranous 

vesicles which are released to the surroundings. Extracellular vesicles are categorized to 

exosome (EX), microvesicle (MV) and apoptotic body based on their biogenesis pathways. 

Exosomes and microvesicles have been described two important subpopulation of EVs which 

most of researches have focused on their origin/biogenesis, size distribution, component and 

biological function. Exosomes comprise small membranous vesicles and they range 30 to 120 

nanometers in size, whereas, microvesicles are partially larger vesicles and their size range 

between 50 nanometers to 1 micron.  

Exosomes are regarded as homogenous population of vesicles generate by inward budding of 

the late endosome or multivesicular body (MVB) through the endosomal sorting complex 

required for transport (ESCRT)-dependent or independent mechanism. Some other proteins 

such as programmed cell death 6 interacting protein (PDCD6IP; also known as ALIX) and 

tumour susceptibility gene 101 protein (TSG101) are also involved in exosome biogenesis 

(108-110). They are subsequently secreted post-fusion to the cell membrane which mostly 

depends on activity of several Rab GTPase proteins (111).  
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Moreover, microvesicles and apoptotic bodies have been described heterogeneous EV 

population in size range. They are directly released via budding outside of the cellular 

membrane by regulatory proteins such as ADP-ribosylation factor 6 (ARF6) (112, 113).  

6.2. EV Components and biological functions  

Extracellular vesicles that are released in cellular microenvironment could influence on local 

adjacent cells or even distant cells systematically. EVs contain a complex set of molecules 

(proteins, mRNAs, miRNAs, DNAs and lipids) depending on their cell of origin, therefore, 

they contribute to cellular and biological processes such as self-renewal, differentiation, 

migration, extracellular remodeling, reduction of oxidative stress, angiogenesis and 

inflammation. Moreover, significant regenerative impact of MSC-derived EVs have been 

reported in myocardial ischemia (88), acute liver failure (ALF) (86, 114), acute kidney injury 

(AKI) (89), neurological disorders (115), wound healing (116) and graft versus host disease 

(GvHD) (92) owing to vesicle content. Therefore, investigation of critical molecules of EV 

cargos may provide new insight to EV-mediated beneficial mechanism. High-throughput 

mass spectrometry-based analysis of proteins revealed some surface receptors (CD105, 

CD73, CD29, CD81 and CD44), signaling molecules (which are involved in controlling of 

TGF-β, BMP, MAPK and PPAR recipient cell signaling pathways), adhesion molecules and 

MSC-associated markers which may account for therapeutic potential of MSC-derived EVs 

(117, 118). In addition, another study showed that MSC-derived MVs highly expressed 

angiogenesis and migration associated cytokines and ckemokines. For example, enhanced 

expression of Interleukine 6 (IL-6), vascular endothelial growth factor (VEGF), basic 

fibroblast growth factor (bFGF) as proangiogenic proteins and monocyte chemokine protein-

1 (MCP-1) as migration-promoting chemokine to inflammation were determined in MSC-

derived MVs content using immunoblot analysis (119). Recently, high-resolution analysis of 

MSC-derived EX/MV demonstrated that EX and MV could be distinguished in the context of 

proteomics.  Most common pathways such as immune response, heparin binding and 

integrins were enriched in EX, however, mitochondrial, proteasomal and endosomal 

reticulum-associated proteins were enriched in MV (120). Interestingly, the result showed c 

MSCs, their restricted expansion has been shown avoiding their large-scale production for 

clinical application (121). Subsequently, multi investigation have been explored an 

alternative strategy to produce MSCs. it's reported  that secretion of growth factors, miRNAs, 

and EVs effects on the biological properties of stem cells including stem cell regeneration,  

differentiation  potential and immunomodulatory roles (122). Interestingly, the regulatory 

factors secreted from condition medium of MSCs improved the kidney and myocardial 

damages in animal model (123).  Last several decades, MSCs immunoregulatory effects such 

as suppression of T and B cells proliferation, inducing tolerant dendritic cells (DCs), anti-

inflamatory cytokines secretion have been demonstrated  (124) .Moreover, MSC-derived EVs 

inhibit immune reactions through reduction of inflammatory cytokines and increasing of anti-

inflammatory responses in same way to MSCs but the underlying mechanisms are still not 

cleared (125). Recently, Fattore et al., discovered that MSC-EVs display strong 

immunosuppression activity as MSCs by T cell apoptosis, increase T reg population and the 
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release of interleukin-10 (IL- 10). Also, MSCs-derived EVs down regulate TNF-a  and IL-1b 

that are inhibitory factors for T cells maturation  (126). 

6.3. EV purification, storage condition and characterization 

In order to get reproducible results of extracellular vesicles in preclinical and clinical studies, 

obviously, attention must be paid towards standardization of methods used for sample 

collection, isolation and also characterization of EVs (127, 128). Therefore, to minimize non-

EV contamination, ISEV suggested minimal criteria to get a high yield and pure population 

of EVs. 24 to 48 hours serum free or EV-depleted serum containing conditioned media has 

been suggested for EV collection (129). 

There are several methods such as ultracentrifugation, density gradient, ultrafiltration, 

immuno-affinity, polymeric precipitation and microfluidics have been reported for isolation 

of extracellular vesicles (129). Of above mentioned methods, differential ultracentrifugation 

is assumed to be a gold standard procedure displaying high amounts of yield and low/medium 

pure EVs. However, density gradient is considered as a second commonly applied protocol 

generating low/medium yield and high pure EV subpopulation (130).  

Based upon the limited published studies have explored yet, EVs suspended in PBS buffer 

should be stored at -80◦C until additional experiments (128). Nevertheless, disruption and 

loss of function have been observed after defreezing of EVs (128). Thus, it is not clearly 

determined that temperatures -80 or below that could have an impact on structure and 

functional properties of EVs. Besides, it cannot be claimed that whether fresh or freeze-

thawed sample is preferred for clinical application. It seems that further research is needed to 

define optimum storage condition.  

Among different quantification methods of EVs, Nanosight Tracking Analysis (NTA), 

Dynamic Light Scattering (DLS) and also BCA assay are reported to be mostly used for 

vesicle size and/or amount and protein concentration, respectively. Unlike DLS technique 

which is able to get only particle size, both size distribution and EV number are defined by 

NTA (131).  Additionally, Electron microscopy is used to visualize the cup-shaped sphere 

morphology of EVs (132). Protein expression in EVs such as Alix, Tsg101 and tetraspanins 

including cluster of differentiation markers (CD9, CD81 and CD63) could be determined by 

western blotting and flow cytometry techniques. Based upon ISEV criteria it is suggested to 

examine at least three of mentioned proteins in order to ensure the purity of EVs (127).  

7. Exosomes as gene delivery vehicles 

Extracellular vesicles such as exosomes and microvesicles are harboring of DNA, mRNA, 

mirRNA, siRNA, proteins and showing a potential mode of intercellular 

communication(133). EVs are safe and biocompatible nanoparticle delivery tools from 

endogenous and exogenous nucleic acid sources. EV fraction extracted from HBV-infected 

cells contains abundant HBV DNA with the lack of HBsAg and could be transmitted to 

primary hepatocytes. This transmission by EVs is resistance to antibody neutralization and 

may be contributes occult hematite infection apart of HBV S gene mutants(134). 
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Communication between leukemic cell and normal blood cell with EV containg leukemic 

DNA increase malignancy and novel therapeutic targets to suppress tumor progressions(135). 

exoDNA is an important DNA appear in the circulation in early stage of cancer,  and could be 

serve  as a biomarkers. Intrestingly, circulating cell-free DNA is obtained from apoptosis and 

necrosis of tumor cells, which are belong to later stage malignancies(136). In glioblastoma 

multiform (GBM), EV secreted from tumor cells can cross from blood brain barrier,So they 

could be used to detect specific molecular mutation such as IDH1G395A(137). EVs derived 

from cardiomyocyte have DNA and RNA that induce 333 gene profile changes including 

suppressive and inductive effect, could change metabolic profile in target cells (138). 

Exogenous dsDNA loaded to EVs by electroporation method is limited to the size of DNA. 

The size limitation for this method is up to 1000 bp, however, for transfection methods is 4.5 

-10 kbp. Transfection method has a lower efficacy than electroporation(139).  Genetically 

modified cells that produce therapeutic EVs like prodrug-activating enzymes are assumed 

novel cancer vaccines for tumor cell. Mizrak et al. used MVs that express gene mRNA and 

protein–cytosine deaminase join to uracil phosphoribosyl transferase for the treatment of 

schwannomas in mouse models. This enzyme converts pro-drug (5-fluorocytosine (5-FC)) to 

5-fluorouracil (5-FU) as an effective anti-cancer drug (140). Y RNA fragments as a non-

coding RNA  in high level in EVs, have an anti-inflammatory by inducing of IL-10 

expression and cardioprotection effect(141). siRNA loaded in EVs by  transfection methods 

can be used for the silencing of Huntingtin gene and protein.  Glyceraldehyde 3-phosphate 

dehydrogenase(GAPDH) siRNA and (beta-secretase 1) BACE1 siRNA loaded into 

engineered dendritic cell-derived EVs delivery was exhibited the strong mRNA (60%) and 

protein (62%) knockdown of BACE1 and had therapeutic effect in Alzheimer ‘disease, in 

animal models(142, 143). MicroRNAs (miRNAs) are small conserved RNA molecules can 

decrease protein levels by degrading the mRNA or stopping the translation of the target gene. 

Exosomes deliver miRNAs to target cells, which reduces the levels of miRNA-target genes. 

MVs containing miR-29a/c significantly decreased the growth rate of the vasculature and 

tumors in gastric carcinoma(144). EVs derived from fibroblasts transfected with  miR-195 

led to decrease the size of cancer tumors, and improve survival of treated animals(145). 

 Modified and unmodified EVs have been exploited to achieve therapeutic effects. In 

modified cases, EVs are isolated from engineered cells and to be containing a specific 

mirRNA or siRNA that suppress specific mRNA, reduce inflammation or inhibit tumor 

growth. miR-124 and miR-145 have been transfected into MSCs, and these engineered MSCs 

released EVs containing miR-124 or miR-145, which induced the differentiation of neural 

cells in pathological conditions(146). EV- Let-7 targeted to EGFR-expressing cells provide a 

platform for clinical use of miRNA molecules to deliverantitumor miRNA to cancer tissues 

in vivo (147). In addition, promising results employing EVs as nucleic acid vectors to 

attenuating of HCV replication and expression of its receptor CD81, control obesity and 

immune responses have also been reported (148-150) (table 1). 
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8. MSC EVs as drug delivery vehicles 

 Drug delivery system (DDS) is a key technology to achieve effective and safe medication, 

since without DDS, therapeutic agents can easily distribute throughout the body and affect 

non-disease sites (151). An exciting and promising novel approach for efficient drug delivery 

is EVs. EVs can be used to deliver small pharmaceutical or biological molecules and pass 

major biological barriers such as the blood–brain barrier (BBB). At present, the well-known 

and ideal cell that has a scalable capacity to produce massive amounts of EVs is MSC. The 

use of EVs as new natural vesicles and ideal non-cell-based treatment strategy as delivery 

vehicles are being grown. Research has shown that MSC EVs as an ideal delivery vehicles 

are benign and non-immunogenic that unlike another cell sources of EVs such as dendritic 

cells (DCs) would not elicit immune rejection response or adverse effect when used as drug 

delivery vehicles (9). 

 

8. Advantages of EVs relative to other synthetic vesicles 

 EVs have many characteristics of an ideal delivery vehicle and can be as favorable 

alternatives to liposomes and other synthetic vesicles as drug delivery vehicles. Unlike 

synthetic vesicles, EVs have the distinct advantage, firstly, their natural origins that have 

protein and genetic materials (such as mRNA and miRNA) in their constructions which 

suggest EVs could be loaded by such biological materials and make them promising drug 

carriers, secondly, EVs are well tolerated and less toxic in the body as evidenced by their 

ubiquitous distribution in biological fluids such as blood, saliva, urine, cerebrospinal fluid, 

amniotic fluid, bile, and breast milk and thirdly, EVs have long half-life in circulation and a 

notable intrinsic capability to home to target tissues. MSC EVs-mediated drug delivery is 

likely to be biocompatible and would not elicit immune rejection response or adverse effect 

(9). 

 

9.1. Exosomes loading (in vitro- in vivo) 

Extensive research has been carried out using exosomes as vehicles for drug delivery. 

Efficient delivery of substantial number of therapeutic cargo from EVs highly depends on a 

successful method of their loading (152). Several strategies can be utilized for loading 

therapeutically active cargo molecules into extracellular vesicles (EVs): (A) loading EV-

producing cells with a therapeutic agent or in vivo drug loading, which is then released in 

EVs, recently researchers have shown that MSCs are able to uptake and then release 

entrapped drugs and suggested that MSCs are a promising factory to develop drugs with a 

higher cell-target specificity (Stem cell-extracellular vesicles as drug delivery systems: New 

frontiers for silk/curcumin nanoparticles (153), (154), (B) transfecting/infecting EV-

producing cells with DNA encoding therapeutically active compounds which are then 

released in EVs; it was reported that miR-122- transfected adipose-derived MSC is able to 

effectively package miR-122 into secreted exosomes and increase chemosensitivity of 

hepatocellular carcinoma through alteration of miR-122-target gene expression (155), and(C) 

In vitro drug loading refers to drugs loading into naïve EVs. Different procedures for drug 

incorporation in EVs were proposed including incubation, freeze/thaw cycles, 

electroporation, sonication, extrusion, and permeabilization with saponin (Figure 1). 

Doxorubicin and paclitaxel as two potent chemotherapeutic agents were loaded into EVs 

released by macrophages in 3 ways including incubation at room temperature (RT), 
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electroporation, and sonication (156). In 2015, Haney et al. applied sonication to EVs to load 

catalase and demonstrated a significant loading enhancement compared to permeabilization 

with saponin, freeze-thaw cycles, sonication, and extrusion (157). EVs act as messengers and 

interact with target cells to induce changes in their physiology. Some studies have shown the 

interaction of EVs with recipient cells by suitable techniques, such as flow cytometry, 

fluorescence microscopy. EVs can be interacted by target cells through mechanisms 

including ligand/receptor pairs and fusion with the plasma membrane, phagocytosis, 

endocytosis or micropinocytosis. For instance, LFA-1, a specific ligand on DCs can capture 

ICAM-1-bearing DC-EVs. In some cases, induction of physiological changes occurs after 

binding of EVs to recipient cells, for instance during the presentation of MHC–peptide 

complexes to primed T cells or NKG2D ligands to NK cells. In other cases, transferring of 

content of EVs inside the recipient cell induces physiological changes. It depends on the 

recipient cells, phagocytosis in macrophages, receptor-mediated endocytosis in DCs, 

macropinocytosis in microglia, lipid raft–dependent endocytosis in endothelial and tumor 

cells(157) (Figure 1). 

 

  

 

 

10. EVs rout of administration models   

Since understanding of communication between cells by EV and details of their biogenesis 

and release lead to improved diagnosis, early detection and novel therapeutic possibilities in 

some diseases. EVs can be used for delivery of drugs and genes as described previously. EVs 

can be administrated in intravenous injection, Subcutaneous/intravenous, intranasal and in 

situ injection and followed in vivo (158). For instance, administration of exosome contained 

supper paramagnetic iron oxide nanoparticles into the footpad resulted in EVs localization 

into lymph nodes with magnetic resonance tracking (159). The intravenously injected 

exosomes loaded with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) siRNA for 

specific knockdown of the GAPDH gene and delivering the APP cleaving enzyme (BACE1) 

siRNA, down regulation of the BACE1 protein in the brain was achieved in mouse model of 

Alzimers disease (143). In another research intranasal administration route of curcumin-

loaded exosomes from different cell types were capable for transversing of the blood brain 

barrier (BBB) and selectively taken up by microglial cells and induce apoptosis. In result 

exosomes inhibit brain inflammation and autoimmune responses in a model of experimental 

autoimmune encephalomyelitis and rapidly showed effectiveness. In this experiment, 

exosomes represented a safe and efficient delivery tool by crossing the BBB noninvasively 

and without being immunogenic (160).  Moreover, intravenous administration of MSCs-

derived EVs significantly improved functional recovery, rescued pattern separation and 

spatial learning impairments, promoted neurovascular remodeling (angiogenesis and 

neurogenesis) and reduced neuro inflammation in TBI animal models (161). Systemic 

administration of cell-free MSC-generated exosomes from tail route improves functional 

recovery and enhances neuron remodeling, neurogenesis, and angiogenesis. Based on results, 

axonal density and synaptophysin-positive areas were significantly increased along the 

ischemic boundary zone of the cortex and striatum in stroke rats treated with exosomes as 

EVs compared with PBS control as data shown with histopathology and 

immunohistochemistry (162). However, recent evidences, obtained following miR-155 
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loaded EVs expression, suggest that, in the blood, EVs are detectable as early as 5 min after 

intravenous administration with subsequent distribution in the liver, adipose tissue, lung, 

muscle and kidney, then decrease to less than 50%  during 30 minutes, and become 

undetectable after 4 hours (163), so it is crucial to use proper and accurate route for 

administration , biodistribution, trafficking analysis of exogenously administered MSCs-

derived EVs to receive more effective therapeutic response.  

 

11. EVs as a tool for diagnosis and therapy 

EVs carry nucleic acids and proteins from their host cells that are indicative of 

pathophysiological conditions of host cell. EVs have been recently involved in intercellular 

communication and in a variety of biological processes such as modulation of immune 

response, signal transduction, transport of genetic materials. They can be isolated from body 

fluids such as plasma, urea, blood, saliva, breast milk (164). EVs are widely considered to be 

important tool for biomarker discovery in early detection and also therapy of various diseases 

such as cancer and neurodegenerative diseases. Characterization of biological parameters 

such as protein, nucleic acid or even CD markers and lipid composition seriously are crucial 

for EVs potential applications. Early diagnosis of many cancers will not be possible. 

Therefore, it is of outstanding interest to look in more detail to the EV cargo (i.e. proteins, 

miRNA, mRNA) as they provide tools to monitor the status of the relevant producer cell. In 

this respect, the exploitation of comparative omic studies is fundamental for the detection of 

new biomarkers. For this reason, in proteomic and lipidomic analysis could significantly 

appliance the use EVs for theranostic (the combination of both therapeutic and diagnostic) 

approach (165). Expression level can be evaluated for diagnostic traits in compare of healthy 

conditions in various human diseases such as cancer or targeted for therapeutic application 

(166, 167). These nanoparticles can indicate the medical state of patients because of 

correlation between parent cell and biomarkers. For instance, it was revealed that panels of 

eight EV-associated proteins were up regulated in the urine of patients with bladder cancer 

compared to healthy subjects (168). Likewise, miRNA profiling of plasma-derived EVs 

identified a panel of four tumor-specific miRNAs of potential use in a screening test for lung 

carcinoma (169). MSC-EV can mimic the effects of their parental cell. Compared to cells, 

MSC-EV is very smaller and has lower possibility of rejection. For example based on Lau et 

al. in 2013 indicated that exosomes isolated from saliva may provide is criminatory 

biomarkers for pancreatic cancer (170). Also, Elements released by malignant cells such as 

oncogenic proteins and miRNAs, which can traverse via EVs to the tumor microenvironment 

and transfer of oncogenic activity to non-malignant cells. For example, mRNA and miRNA 

arrays have been employed to identify mRNAs and miRNAs associated with melanoma 

progression and metastasis in extracellular vesicles derived from melanoma. Identified RNA 

biomarker candidates are validated using quantitative real-time reverse transcription 

polymerase chain reaction (qRT-PCR) (171). MSC-EVs could recaptulate the effects of 

MSCs in tumor therapies.Therefore; MSC-EVs are as alternative strategy that could 

overcome the limitations of cell-therapy approaches. In addition, due to their small size and 

transfection efficiency, EVs can act as proper nano vehicle for delivery of for example cancer 

or neurodegenerative disease drugs. These lipid vesicles could be engineered to deliver 
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therapeutic agents to target sites. For instance, it has been reported that the EVs secreted by 

SR4987 cells as mesenchymal cell model primed with paclitaxel (SR4987PTX) delivered 

active drugs and inhibited human pancreatic adenocarcinoma cells proliferation in a dose-

dependent manner. This experiment demonstrated that MSCs are able to package and deliver 

active drugs through their micro vesicles, suggested the possibility of using MSCs as a 

factory to develop drugs with a higher cell-target specificity (154). Currently some database 

are available for recording diagnostic result of EVs content for various disease, i.e., 

Vesiclepedia (www.microvesicles.org), EVpedia (www.evpedia.info) and ExoCarta 

(www.exocarta.org)  (172). 

Moreover, EVs have also the potential to serve as a noninvasive intervention for successful 

delivery of therapeutic agents such as drugs and siRNAs to the brain. Immunotherapy 

represents one of the most investigated aspects in EV-mediated therapy. It is also well 

determined that most of the mis-folded proteins associated with neurodegeneration such as 

superoxide dismutase, α-synuclein, amyloid and tau - involved in amyotrophic lateral 

sclerosis (ALS), Parkinson’s disease, Alzheimer’s disease and tauopathies, respectively, are 

carried via EVs, which can be considered as novel biomarkers for neurodegenerative diseases 

and interpret such neuronal EV (nsEV) analyses to neural clinical diagnostic applications and 

drug development. (158, 173).  Although exosomes do not replicate as an independent entity, 

but they can facilitate movement and spread of infection (bacterial or viral) through blood 

and tissues and could cause the effect in gene expression in the recipient cells through the 

classical toll-like receptor and NFκB pathway. In this regard EVs that can target certain tissue 

types and can protect them from the immune system are more preferred than liposomes, as 

they also have a longer half-life. So, EVs can be utilized for diagnosis or therapeutic aspects 

of infectious disease particularly in the pathogenesis of HIV to prevent from transmitting of 

infection (174). It has been shown that the level of EVs circulating in blood is significantly 

elevated in cancer patients. EVs vesicles purified from urine could be used for monitoring of 

the status of prostate cancer patients, because they contain elevated levels of 5T4 oncofetal 

trophoblast glycoprotein, prostate-specific antigen, and prostate-specific membrane antigen, 

relative to normal urinary EVs (175). Based on mRNA expression level analysis for diagnosis 

of cancer, extracellular vesicles purified from urine of prostate cancer patients, show 

increased expression of prostate cancer antigen-3 and transmembrane protease serine 2- 

transcriptional regulator ERG gene fusion (176). Furthermore, gastric cancer, glioblastoma, 

and lung cancer may also be detected using EVs, which show elevated expression of several 

cancer biomarkers including extracellular matrix metalloproteinase inducer, hepatocyte 

growth factor receptor, human epidermal growth factor receptor-2, and melanoma-associated 

antigen-1 for gastric cancer (177), prominin-1 for glioblastoma (178), and leucine-rich a-2- 

glycoprotein for lung cancer (179). In addition, circulating extra cellular vesicles purified 

from the blood of glioblastoma patients contain epidermal growth factor receptor variant III 

mRNA (180). Circulating EVs purified from the blood of gastric cancer patients exhibit 

significantly higher levels of mRNAs encoding melanoma-associated antigen-1 and human 

epidermal growth factor receptor-2 (177). The level of miR-21 is increased in circulating 

extracellular vesicles of patients with ovarian or esophageal cancer. In addition, levels of 

miR-141, miR-200a, miR-200b, miR-200c, miR-203, miR-205, as well as miR-214 are 

increased in the circulating EVs of ovarian cancer patients (181). 
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However, further studies are warranted for clinical and commercial application of the use of 

circulating EVs for cancer diagnosis and monitoring. Experimental biomarker sources and 

several proteins or RNAs in EVs have been found to be useful in monitoring of wide range of 

disease. But it is necessary to standardize the technique of EVs manipulation for their 

application in therapy and long-term EVs effectiveness in the treatment of human disease.  

 

12. Application of EVs derived from MSCs in regenerative medicine 

12.1. Immune disease treatment 

MSCs can manage immune systems response through cell-cell association and discharge of 

paracrine molecules. It's trusted that MSCs select inhibitory chemokines and stifling ligand-

receptor associations to assume a noteworthy part in immunosuppression and T cells 

movement direction(182). In agreement to understood MSCs immunoregulatory impacts, 

MSCs-determined EVs including microvesicles, exosomes and apoptotic vesicles have 

likewise been shown immunological concealment movement by enlistment of mitigating 

cytokines levels and diminishing of provocative chemokines which make them a contender 

for immune disorders treatment(10). What's more, MSCs-derived exosomes can likewise 

hinder Toll-like receptor signaling and activation that identified with innate 

immunomodulatory activity of MSCs(183). At the point when MSCs-inferred exosomes 

infused into a hypoxic pneumonic hypertension demonstrate, the inflammation suppress 

through pro-proliferative signaling, for example, phosphorylation of STAT3(184). The 

various consequences of EVs immunomodulation activities make EVs awesome 

immunotherapeutics alternatives. The extracellular vesicles (EVs) emitted by both 

prokaryotic and eukaryotic cells can convey molecular patterns of pathogen-related and 

injuries related, cytokines, autoantigens and the catalysts identified with tissue corrupting. 

What's more, EVs may be connected to diagnostics and focused on treatment in the 

incendiary and immune diseases (185) .In view of this speculation, MSC-derived exosomes 

possess an induction of peripheral tolerance. The segregated Microvesicles from co-culture 

amongst MSC and splenic mononuclear cells could hinder autoreactive lymphocyte 

multiplication and arrival of interleukin (IL)- 10 and transforming growth factor (TGF)- β in 

autoimmune system encephalomyelitis mouse display. Likewise, MSC-derived microvesicles 

have been broke down by flow cytometric techniques which its outcomes have demonstrated 

these cell-items can be a transporter for tolerogenic molecules including PD-L1, Gal-1, and 

TGF-β. This trial data recommend that MSC-derived EVS are strong organizer for peripheral 

tolerance induction and direction of invulnerable responses, which thought a novel obstinate 

hopeful as opposed to utilizing MSCs in immune system sicknesses treatment(186).  

Powerful techniques have been examined EVs anti-inflammatory properties for Rheumatoid 

Arthritis (RA). The transplantation of autologous adapted serum (ACS) exosomes intra-

articular seems useful impacts on RA treatment with diminished agony in joints and 

decreased markers of inflammation markers in the blood test. ACS-derived exosomes will be 

a promising and safe treatment for different sicknesses identified with the chronic 

inflammation or autoimmunity because of RNA and protein transfer.. MSC-MVs smothered 

multiplication in the receptive lymphocyte and furthermore IL-10 and TGF-b emission 

Correspondingly, exosmes got from MSCs were utilized as a part of lupus murine model and 
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were critical to ensure MSCs function.(187). As of late MSC-derived exosomes have been 

infused in mouse models of allogeneic skin grafting which prompt expanding Treg levels and 

put off GVHD for two days. In vitro  explores revealed that the enactment of MYD88-

subordinate motioning in monocytes gave by exosomes expanded Tregs cells (182). Clinical 

utilization of MSC exosomes in a patient therapy-refractory graft-versus-host disease proved 

their efficacy demonstrated their adequacy and 4 months following up of appearances 

identified with mucosa and cutaneous enhanced while immunosuppression organization 

diminished. Every one of the perceptions present the MSCs exosome potential for 

autoimmune treatment and immunotherapy however more examinations is required to assess 

their and advantages and disadvantages, viability and security for immunomodulatory 

purposes (188, 189). 

 

12.2. Cancer therapy 

Several studies have reported that EVs are potential candidates for the treatment of different 

tumors. Zitvogel and colleagues were the first researchers who have used tumor peptide-

pulsed dendritic cells (DCs) EVs as an alternative to DC adoptive therapy against tumors. 

Some studies have demonstrated that MSC derived EVs have a strong tropism to tumor 

environment such as their cellular origin which can provide a promising therapy for cancer 

treatment. It has been shown that MSC derived EVs can induce cell death by apoptosis in 

HepG2 (hepatoma) and Kaposi’s sarcoma cancer cell lines, while necrosis has been seen in 

ovarian cancer cell line (Skov-3) after MSC EVs treatment (190). EVs can pass the blood–

brain barrier and have been demonstrated to deliver genetic materials contained within to 

brain. These nano-vesicles are non-viable and the risk profile of EVs is thought to be less 

than that of cellular therapies. The natural ability of EVs to transport RNA suggests that these 

particles can be useful in gene- based cancer therapy to deliver therapeutic short interfering 

RNA (siRNA) and miRNAs to the target cells. Shtam et al. reported that EVs can deliver 

RAD51- and RAD52-siRNA into fibrosarcoma cell line and induce both gene knockdown 

and the massive reproductive cell death (191). EVs derived from the high expression of 

tumor suppressor miR-146b MSCs, inhibited glioma growth in a xenograft model (192). Two 

other studies also showed EV-delivered tumor suppressor miRNAs, let-7a and miR-143, 

inhibited tumor growth of breast and prostate cancer in vivo, respectively (147), (193). 

Migration of osteosarcoma cell has been reduced by EV-formed miR-143 (194). Munoz et al. 

have reported glioblastoma was more sensitive to chemotherapy after delivering anti-miR-9 

through MSC EVs (195). In 2014, Pascucci et al. showed that MSCs as a factory are able to 

package and deliver paclitaxel through their MVs and possessed strong anti-proliferative 

activity on the human pancreatic cell line (CFPAC-1) (185). EVs from dendritic cells loaded 

with a chemotherapy agent doxorubicin inhibited the growth of breast cancer xenograft 

tumors in vivo (196). MSC derived EVs can acquire strong anti-tumor activity after priming 

with anti-cancer agents. EV as an endogenous and promising vehicle for delivering active 

molecules, such as chemotherapeutic agent, growth factors and genetic molecules, 

specifically to the tumor microenvironment in cancer. 
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12.3. Neurological disease 

There are strong evidences that EVs, and in particular endosome-derived exosomes 

contribute to homeostasis in the CNS. Neurons communicate with each other through the 

secretion of EVs contributing to local synaptic plasticity, but EVs may also allow longer 

range communication within the CNS and influence neuronal networks located at a distance. 

In CNS-associated diseases, EV biogenesis, transfer or composition can alter, and cause 

pathology (165). Altogether, the EVs contribute to the local proliferation of 

neurodegenerative diseases, targeting EVs or manipulating the nature of EVs as natural 

carriers of miRNAs and drug delivery devices. It has been investigated that EVs as 

biomarkers of CNS disorders as well as therapeutic agents (197). Also, targeting EVs directly 

to sites for inhibiting deleterious effects seems an attractive approach. Adeno-associated 

viruses (AAVs) encapsulated in EVs with viral capsid proteins can deliver genetic cargo into 

recipient cells (198). EV-mediated delivery offers multiple advantages as these vesicles are 

biocompatible, can be autologous (i.e. patient-derived) and appear to use as the novel weapon 

for the treatment of TBI according to its advantages such as nanosize, easy administration 

and notably ability to cross the biological barriers especially the brain barrier. In a study of 

EVs as a vehicle, EVs loading with siRNA by electroporation and engineered to expose a 

brain-specific peptide (rabies virus glycoproteinderived peptide), specific mRNA knockdown 

was observed throughout the brain but was minor in the liver and spleen. The therapeutic 

potential of EV-mediated siRNA delivery was demonstrated by protein (62%) knockdown of 

BACE1, a therapeutic target in Alzheimer’s disease (143). In another research for therapy 

approach in Alzheimer’s disease with an aspect of increase in antibodies against ceramide, 

Dinkins et al. administrated subcutaneous ceramide injections to increase serum anti-

ceramide IgG in mice animal model and circulating exosomes and finally aid exosome-

mediated clearance of Aβ (199). In neurodegenerative disorders, neurons, and in some cases 

astrocytes, produce and release aggregated proteins such as a-synuclein, amyloid precursor 

protein (APP) and phosphorylated tau and, pathogenic PrPSc protein, inprion disorders. In 

demyelinating disease, myelin-stressed oligodendrocytes produce altered myelin proteins and 

heat shock proteins (HSPs) that may hypothetically be released in EVs. The ‘disease-

associated’ proteins activate microglia that may intense disease or alternatively affects 

neurons and axons leading to dysfunction. Despite the current realization that siRNA loading 

into EVs has although many technical difficulties need to be overcome, targeting of EVs to 

the brain, a major previous biological barrier, seems at least possible. In another recent study, 

intrastriatal injection of exosome-mediated transfer of miRNA (in particular, miR-124a) was 

shown to have a role in neuron to astrocyte signaling. In the research of ALS therapy, 

exosomes isolated from a neuron in conditioned medium which contained small RNAs and 

internalized into astrocytes, increased astrocyte miR-124a and GLT1 protein levels in ALS. 

MiR-124a is selectively reduced in the spinal cord tissue of end-stage mouse model of ALS. 

In addition, exogenous delivery of miR-124a in vivo through stereotaxic injection seemed to 

prevent further pathological loss of GLT1 proteins in animal model (200). Traumatic brain 

injury (TBI) is a leading cause of death and long term disability such as behavioral, cognitive 

and motor deficits worldwide. At present, there are mainly two therapeutic strategies to treat 

TBI; one is a neuroprotective and neurorestorative treatment. In first,  focus on reducing or 
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preventing secondary injury and neural cell death and, the second is to improve neurological 

recovery in CNS to promote neurovascular remodeling including angiogenesis, neurogenesis, 

oligodendrogenesis and dendrite or axon outgrowth (162).  

 In the past decade, exosomes as EVs wildly have been used in research of TBI treatment. In 

this respect, EVs contain various miRNAs which play a key role in modifying the phenotype 

and/or the physiology and modulating the cellular processes of the recipient cell, and 

miRNAs such as miR-21 could be potential therapeutic targets for interventions after TBI 

(201). In another study, Katsuda et al. (2013) have provided an important role for ASCs-

derived exosomes in the context of AD, as these express high levels of Neprilysin (NEP), the 

most important Aβ-degrading enzyme in the brain. NEP-loaded exosomes were shown to be 

efficiently transferred to neuroblastoma cells and led to the decrease of both extracellular and 

intracellular Aβ levels. In vitro neurodegeneration model, exosomes released by dental pulp-

derived MSCs on a 3D culture, rescued dopaminergic neurons from 6-OHDA induced 

apoptosis, thereby providing a possible treatment of Parkinson’s disease (202). Based on data 

achieved from continuous intracerebrally injection of exosomes which loaded with Aβ on 

surface glycosphingolipids, nanovesicles transport into microglia in AD mouse brains, result 

in reductions in Aβ pathology in hippocampus and provide a novel therapeutic intervention 

for Alzheimer disease(203). Immunomodulation of neurological disorders by use of EV-

mediated is in primary steps but important in application of EVs in therapeutic approach. and 

effective. For instance, use of EV derived from modified dendritic cells secreting TGF-β1 to 

inhibit the progression of murine experimental  autoimmune encephalomyelitis (204). Lopez-

Verrilli et al. (2016) have recently unraveled the potential of menstrual MSCs (MenSCs) 

exosomal-enriched fraction as therapeutic approach in neurodegenerative pathologies. 

Because MenSC exosomes induced neurite growth in cortical neurons and had a similar 

effect to BM-MSC exosomes on neurite outgrowth of dorsal root ganglia neurons (205). EV 

protein therapy as a novel strategy for delivery of catalase in Parkinson’s disease to reduce 

oxidative stress and thus help neurons to survive is another application of EV, as prodrug 

actives enzymes which can convert a prodrug which crosses the blood–brain barrier into a 

toxic chemotherapeutic drug for schwannomas and gliomas, and the apoptosis-inducing 

enzyme, caspase-1 under a Schwann cell specific promoter for schwannoma (206). In the 

pilot immunotherapy trial for recurrent malignant gliomas, autologous exosomes isolated 

from tumor cells which removed by surgical craniotomy. The isolated cells, treated with an 

investigational new drug (an antisense molecule), that target surface receptor protein, are re-

implanted (encapsulated in a small diffusion chamber) in the abdomen of the patient. Tumor 

cells treated with the antisense molecules, to apoptosis. Released exosomes are full of tumor 

antigens that together with the antisense molecules and could stimulate the immune system 

against tumor recurrence. The patient of this trial is currently processing. (NCT02507583) 

(www.clinicaltrial.gov). EVs study and analysis is an interesting target for the potential 

detection of new therapeutics in regenerative medicine. This potential needs to further 

research in EVs field, as well the study of novel techniques to produce and develop 

engineered EV. 
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12.4. Cardiovascular disease 

Numerous preclinical and clinical studies within the past few years have demonstrated that 

cardiac stem cell-based therapy could be considered as a new and safe therapeutic procedure 

in heart disease. Among different stem cells that have shown beneficial effects MSCs are the 

most promising cells. The accessible and safety of allograft transplantation of these cells 

make them the most popular stem cells in cardiovascular disease therapy.(225) There have 

been several assumptions regarding mechanisms of MSC related cardiac repair, including 

transdifferentiation and cell fusion. However, the magnitude of overall physiological impact 

seems higher than just structural contribution of these transplanted cells. Therefore it is 

claimed that other components secreted by these cells may contribute to the significant 

therapeutic effect induced by these cells (226,227). These assumptions were further 

confirmed by infarct size reduction and cardiac function improvement in animal models after 

injection of CM of MSC and also by injection of vesicular components of the CM(228,229). 

These findings concurred with new discoveries in 2005 demonstrating that the extracellular 

vesicles derived from platelet are able to induce revascularization in chronic cardiac ischemia 

via VEGF secretion stimulation (230). 10 years later published studies showed that extra 

cellular components derived from plasma trigger cardio protective reactions in ischemia-

reperfusion through induction of TLR4 (Toll-like receptor 4) (231). These findings 

encouraged scientists to discover and empower the components of these paracrine factors in 

order to recapitulate the ability of these components to develop cell-free transplant systems 

and hopefully to overcome the problems associated with cellular therapy. Further studies 

indicates that exosomes derived from cardiac progenitor cells mollify cardiomyocyte death in 

a murine model of ischemic-reperfusion (229,232) Besides, cardiospher-derived cells release 

exosomes that exert the same regenerative effect as their cells of origin in left ventricular 

dysfunction(233,234). Likewise, EVs from human embryonic stem cell driven cardiovascular 

progenitor cells improve cardiac function in post infarct heart failure model of murine like 

their cell counterparts (235). Not only are intact EVs considered as an alternative to cellular 

therapy but also the desirable designed or favorably loaded extracellular vesicles are going to 

be more deeply studied and examined. The assumption is that they may weather be designed 

to target the specific cells or used as a cargo to deliver the drugs of interest to the particular 

cells. For instance it has been shown that miR-126 carrying vesicles decrease atherosclerotic 

plaque formation in mice (236). Furthermore, miR-126 vesicles induce angiogenesis after 

vascular injury (237). Besides, sonic hedgehog overexpressing exosome derived from CD34+ 

improve cardiac function (238). Likewise, sonic hedgehog overexpressing exosome derived 

from T-lymphocyte induce neoangiogenesis by NO synthesis pathway stimulation (239). 

Although such studies are scarce particularly in cardiovascular disease the results are 

promising and it resting seems that EVs whether as therapeutic vectors or as therapeutic 

agents are a step forwards in cardiac cell therapy.  

 

12.5. Kidney injury treatment 

EVs secret by numerous cell types into the extracellular space and extensively present 

circulate with our body in fluids and carry some regulatory signals such as mRNA, miRNA, 

proteins, and molecules of signaling. Increasing amounts of observations suggest that the 
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extracellular vesicles have a key role in the cell-to cell signaling, normal development and 

various pathological developments (207). This makes them as an intriguing diagnostic tools 

and an effective treatment strategy for drug delivery system, cell-free vaccines. The recently 

data propose that urinary EXs incorporated in mediationg cell-to-cell communication of 

nephrons and transfer of functional molecules such as aquaporin-2 between cells (208). The 

accessible information suggest, EXs also play a key role in kidney development due to Wnt 

proteins and beta-catenin delivery which are intense mediator of kidney developmentm. 

While the kidney-Exosomes impacts on the ordinary procedures of kidney are not completely 

illustrated, huge parts of EXs have been appeared in the different kidney disease 

improvement. For example, MSCs or Endothelial derived vesicles improved kidney 

regeneration. Biancone et al distributed that the beneficial influences of MSCs on both acute 

and chronic kidney injury was because of their paracrine effects. . Different examinations 

have been endeavored to research their paracrine impacts through MSC-derived EXs. All 

things considered, EXs of MSCs promoted the injured-kidney epithelium of rat by the 

suppression of apoptosis, increase of tubular epithelial cell proliferation (209-211). Different 

investigations have detailed the anti-apoptotic genes up-regulation and apoptotic genes down-

regulation via a mechanism related to RNA transfer. It has likewise been exhibited the 

effective impacts of bone marrow and umbilical-derived EXs on cisplatin-induced 

nephrotoxicity. These EXs induced renal epithelium proliferation and also, reduced Bax level 

with increase Bcl-2 level in order to decrease apoptosis (89, 207). Another intriguing research 

area is kidney tumor EXs that play a key role in tumorigenesis. One experiment shown that in 

a SCID (immunocompromised severe combined immunodeficient) mouse model Renal 

carcinoma stem cells (rCSCs) derived- vesicles promote lung angiogenesis and 

metastasis(212). Also, EXs potential as diagnostic tools for the kidney malfunction 

monitoring has been shown. It's established, the urinary EX components linked to specific 

nephron parts, thus many of these components can be related a certain disease (213). The 

elevated GPRC5B or Fetuin-A, ATF3 amount in the kidney-derived EXs associated with 

AKI disease which be known as AKI diagnostic marker. Some markers such as Promonin-1 

(CD133) found in healthy people which is lost in the end stage of kidney disease. Also, 

protein and RNA examination of urinary EXs demonstrate a non-obtrusive technique to 

diagnose several kidney diseases.In addition, protein and RNA analysis of urinary EXs prove 

a non-invasive method to diagnose several renal diseases. All things considered,  miR-145 

and miR-130a levels have been expanded in patients-bearing diabetic nephropathy, while 

miR-155 and miR-424 sums were diminished. It is realized that EXs include in kidney 

maladies, cancer and even even typical improvement of kidney. In any case, many works 

ought to be done to illustrate the physiological mechanisms of EXs by characterized disease 

mode (214-216) . 

12.6. Respiratory diseases  

MSC derived secretome generally utilizing as a part of preclinical analyses and various 

outcomes has been distributed that show they can be a novel cell-free strategies for lung 

disease treatment. The amazingly expansive measure of studies showed that MSCs 

therapeutics impacts emerge from dissolvable elements discharge. keratinocyten growth 
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factor (KGF)  and angiopoietin-1 derived MSC support the epithelium of alveolar and 

endothelium against injury  in acute lung injury(ALI) models and clinical trials 

[ISRCTN95690673](217). ](217). Other considered investigated the the anti-inflammatory 

effects of other emitted factors such as interleukin-10 (IL-10), prostaglandin-E2 (PGE2), or 

transforming growth factor-β (TGF-β). In other hand, few productions demonstrated that 

helpful effects of MSC condition medium (CM)-cell free strategy is same as MSC cell 

therapy. In the lipopolysaccharide (LPS)induced-ALI model, the administration of MSC-CM 

avoid edema formation through insulin-like growth factor I secretion.(218). Thus, another 

examination demonstrated comparable outcome LPS-induction of ALI in an ex vivo lung of 

human which demonstrated the diminishing of irritation, edema hindrance and maintaining a 

strategic distance from the inundation of neutrophils and alveolar liquid ingestion bringing up 

in the harmed alveolus(219).  In any case, MSC-CM helpful application has limited in light 

of the fact that there in not a standard procedure of precondition, finding ideal organization 

course and clinical dosage.  As of late, clinical MSC-CM using confronted to the lack of 

condition medium institutionalization. To date, some investigators been contemplated the 

MSCs microvesicles therapeutic impacts in lung diseases related to acute inflammation such 

as ALI, pulmonary artery hypertension (PAH) and asthma (220).  These gatherings found that 

Micorvesicles show solid impacts as their stem cell source as therapy .one study by MSC 

MVs have been conducted in a mouse model of ALI that be induced  by  endotoxin . MVs 

could reestablish protein permeability of lung, diminish the neutrophils influx , expanding  

levels of macrophage inflammatory protein-2. At long last, they reduced inflammation and 

avoided the pulmonary edema formation in the damaged sites (221). Gennai et al.[105] did a 

research by MSC MVs which prompt upgrade of alveolar of  alveolar fluid clearance in a 

dose-dependent way, reduced lung weight after perfusion and ventilation and also a 

significant improvement of airway and hemodynamic parameterswhen compared to perfusion 

alone[105]. in addition, anti- CD44 antibody administered with MVS that attenuate these 

influences through internalization of the MVS into damage cells (222). the consequence of 

many investigations propose several mechanism actions of MSC MVs to induce beneficial 

effects in lung disease including:1) pre-condition of MSCs  with an agonist of  toll-like 

receptor 3 stimulate MSCs before MVS secretion then will improve bacteria phagocytosis; 2) 

The cyclooxygenase 2 (COX2) mRNA transfer to activated monocytes by MSC MVs cause 

secretion of PGE2 which resulting in anti-inflammatory M2 phenotype of monocytes; 3)it's 

observed the uptake of MSC MVS using CD44 receptor is critical for their effective 

influences in primary cultures of human monocytes or human alveolar type 2 cells.  the 

experimental finding suggested that MSC MVS effectiveness  can be similar to their parent 

cells so they can consider as a successful substitute for stem cell therapy in ALI and other 

lung disease (223).  

 

13-exosomes and clinical trials 

As of late, the International Society for Extracellular Vesicles (ISEV) demonstrated the EV-

based therapies thought of administrative, clinical and fabricating.. Clinical manufacturing of 

mammalian vesicles employ cell culture methods of primary stem cells or cell lines for 

constantly secretion of EVs. Notwithstanding, their manufacture is same as other biologics 
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because they naturally secreted from various cell types.  The most created field of EVs is 

cancer therapy (224, 225). The vaccine of dendritic cell-derived and tumor-derived exosomes 

is contemplated in Phase 1/2 trials. . Other effective ranges for unmodified EVs application 

MSCs, endothelial progenitors, Tregs, DCs, and NSCs, as well as of different cell types, are 

regenerative medicine and immunotherapy of non-malignant disorders. Exosomes derived 

from mesenchymal stromal cells are obtaining to the first clinical trials. At least 3 companies 

(ReNeuron, Capricor and Aegle Therapeutics) are developing commercial use of EVs. 

Capricor Inc., investigating their beneficial applications in cardiac and muscle disease 

(http://capricor.com) and ReNeuron Group PLC, , had practical experience in neurological 

and ischemic conditions (http://www.reneuron.com). Moreover, Anosys Inc., began to make 

up autologous DC-derived EVs vaccine for cancer therapy (http://chromos.com). 

Nonetheless, it is essential to mention advantages and disadvantages, while cell lines 

characterization are still not completely understood but primary cells studies have been 

shown many aspects of their capacities to avoid the immunological rejection (226), which in 

some cases have been reduced by autologous EVs application (227, 228).  All in all, the 

primary cell bank generation is challenging due to low vesicle yield of these cell types and 

restricted passage number. The Crucell have designed a human cell-line technology to 

evaluate oncogenic potential of these cells. Some recent studies are studying the applied 

potential of EVs derived from non-mammalian cells such as bacteria, yeast and plant cells 

(229). One of the serious problems can be their isolation techniques for more translational 

trials and research studies. There are current strategies including ultrafiltration, 

ultracentrifugation or a polyethylene glycol 6000 precipitation method (229).  However, the 

contamination of EVs together proteins or lipoproteins occurs which reduce our isolation 

purity level. Overcoming these problems, we need some reproducible methods that isolate 

functional EVs rapidly without any contaminations. Finally, translation of EVs into clinic 

needs isotonic buffers to keep PH shifts during storage process such as freezing and thawing. 

The optimization and validation of storage condition will conduct stability of their function 

and physical characteristics. Also, the temperature storage and certain materials for long-time 

reservation must be established since they are most effective on the reserved sample quality 

(230). 

 

14. Conclusion 

Although the therapeutic benefits of MSCs in immune modulation and tissue remodeling 

have drawn much interest, there are several limitations that impair their wide widespread use. 

It has been demonstrated that implanted MSCs do not survive for long time and the MSCs 

therapeutic benefits might be attributable to their secreted factors including cytokines, growth 

factors, microRNAs, proteasomes, and exosomes, which may play an important role in the 

regulation of numerous physiological processes (231) . Secretome-based approaches using 

exosomes may present considerable potential advantages over living cells; multiple 

experimental studies demonstrate that secretome-derived products are sufficient to 

significantly improve multiple biomarkers of pathophysiology in many animal models of 

different diseases. Various studies indicate that MSC-derived exosomes exert their effect via 

horizontal transfer of proteins, mRNAs and regulatory microRNAs. Anatomical origin of 

MSC changes the composition and effects of secretomes. For instance, hUCESCs are 

obtained by Pap cervical smear, so the quick obtain of large amounts of hUCESCs or 
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secretome-derived products for research and clinical use is ossible because of their easy 

isolation and high proliferative rate (232) . The complex composition of secretome-derived 

products from MSCs should not be an impediment for regulatory approval of a regenerative 

product. For example, platelet-rich plasma or amniotic fluid, which are routinely used as a 

regenerative therapy for multiple applications in wound healing and orthopedics include 

numerous growth factors and exosomes that have not completely characterized. Exosomes 

sourced from dendritic cells are used in the clinical-trial stage for immunotherapy of certain 

cancers even though the regulatory requirements for manufacturing and quality control are 

required. Safety tests will be based on systemic bio-distribution, biocompatibility and half-

life trials (233). Despite the rapid progress in exosome research, a number of important 

questions remain about their role in MSC biology; including the role that endogenous niche 

resident MSCs, which secrete exosomes or microvesicles, play in hematopoiesis and skeletal 

homeostasis, as well as their role in niche maintenance under normal physiological 

conditions, the possibility of captured MSC by its secreted products for therapeutically use. 

But these problems are some of the most interesting problems in biology that do not confined 

to MSCs or stem cells but the broader biology community will contribute to answer. MSC-

derived exosomes use has several potential advantages in human patients. First, it avoids 

transfer of cells which may have mutated or damaged DNA. Second, against MSCs which are 

too large, exosomes are small to circulate easily through capillaries. Third, while the dose of 

infused MSCs quickly diminishes, it is possible that MSC-derived vesicles can deliver a 

higher “dose” and circulates to a greater extent. Furthermore, their cost-effective strategies 

and possible repeated administration have been though as their advantages. However, MSC-

derived are static and more cannot be produced in vivo when the cell is transplanting (155). 

Several significant parameters affect the utility and efficacy of MSC-derived exosomes 

clinical testing including optimizing reproducible methods to manufacture exosomes/ 

microvesicles with defined content, developing methods of storage and recovery of these 

products that maintain vesicle potency, and evaluating their therapeutic efficacy in well 

controlled, appropriately powered clinical trials that are rationally designed based on 

supporting scientific and translational data.  Still, there are a number of challenges that need 

to be resolved prior to their clinical application. The amount of MSC exosomes needed to 

generate an equivalent effect as MSCs in tissue injury is roughly higher. Although MSCs are 

relatively easy to expand in vitro, their growth in culture is finite, so new batches of MSCs 

and more effective techniques for large-scale exosome production need to be developed 

(229). Furthermore, since there is still no gold standard in characterizing MSC exosomes, the 

obtained exosomes isolated are also heterogeneous which may cause different effects on their 

target cells. Moreover, as the methods used to precondition MSC in stimulating exosome 

release change the surface and their intracellular content, the effective methods for 

maintaining the homogeneity of MSC-derived exosomes need to be developed. 
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Figure legend: 

 

Figure 1. An overview of different extracellular vesicle (EXs  ( , exosomes and microvesicles 

(MVs) loading techniques. Left panel: loading of EVs after their isolation via common loading 

methods (electroporation, incubation, sonication, extrusion, etc.). Right panels: loading of EVs via 

treatment/transfection of the parental cells. 
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Table 1 Overview of therapeutic applications of EV-based gene delivery 

 

Type/source of EV Loading 

method 

Target gene/cells Drug 

(nucleic 

acid  

biotype) 

Target  effects Ref. 

Rat heart-derived 

H9c2 

Transfection  QKI  miR- 

208a/b 

Suppress apoptosis of 

cardiomyocyte 

 

(234) 

Human endothelial 

cells 

Transfection   5-

hydroxytryptamin

e transporter (5-

HTT) 

 miR-195 regulation of the 

proliferation of Human 

smooth muscle cells through 

5-HTT 

(235) 

Adipose-derived Stem 

Cells 

Transfection  WISP2  miR-450a-

5p 

miR-450a-5p promoted 

adipogenesis through 

repressing expression of 

WISP2 

(236) 

human Wharton Jelly 

mesenchymal stromal 

cells 

Transfection  DRP1/ Rat renal 

tubular epithelial 

cells 

 mir-30 ameliorate acute renal IRI 

by inhibiting mitochondrial 

fission  

(237) 

human liver stellate 

cell line (LX2) 

Transfection  VEGF, CDC42, 

CDK1,CDK4, 

CDK6, and 

CDC25/BDEneu 

and BDEsp cell 

line 

 mir-195 decrease the size of 

cholangio carcinoma tumor, 

and improve survival of 

treated rats 

(238) 

HUVEC cells Transfection  VEGF/Human 

gastric cell line 

SGC7901 

mir-29a/c miRNA-containing MVs to 

control gastric cancer 

growth by blocking 

angiogenesis 

(144) 

adipose-derived stem 

cells microvesicles 

Transfection  factor-inhibiting 

HIF-1/ HUVECs 

mir-31 angiogenic therapy for 

ischemic diseases 

(239) 

adipose-derived stem 

cells exosomes 

Transfection  ADAM10, 

IGF1R, and 

CCNG1/ 

Hepatocellular 

carcinoma 

miR-122 enhance HCC 

chemosensitivity 

(240) 

WT-MSCs exosomes Transfection Sema3A and 

Stat3/ 

cardiomyocytes 

miR-223 exosomal miR-223 induced 

cardio-protection in sepsis 

(241) 
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Pancreatic cancer-

derived exosomes 

Transfection RFXAP miR-212-

3p 

miR-212-3p 

transferred to dendritic 

cells & 

decrease MHC II expression 

and induce immune 

tolerance of dendritic cells 

(242) 

Mesenchymal stem 

cells exosomes 

Transfection Efna3/ HUVECs miR-210 MSC-EVs significantly 

improved angiogenesis and 

cardiac function in post-MI 

heart 

(243) 

HEK293T, 

HUVEC,HRVT, 

hMSC 

Electroporation HEK293Ts 1000>bp 

dsDNA 

from the 

VA1 gene 

EVs as broadly applicable 

DNA delivery vehicles 

(139) 

HBV-infected PXB-

cells 

Inoculation with 

HBV 

HBV -DNA  transmitting viral DNA into 

hepatocytes 

(134) 

human  glioma cancer 

stem cells 

Transfection Bloodstream  DNA 

sequence 

of 

IDH1G395 

mutation 

EVs can cross the disrupted 

BBB into the bloodstream 

(137) 

HL-1, acardiomyocyte 

cell line 

Transfection Fibroblasts DNA gene expression changes (138) 

Cardiosphere-derived 

cells 

Exo-Fect 

exosome 

transfection 

Macrophages  Y RNA 

fragment 

cardioprotection via 

modulation of IL-10 

expression 

and secretion 

(141) 

brain endothelial 

bEND.3 

Transfection  U-87 MG cells VEGF 

siRNA 

brain tumor (244) 

Human  keratinocytes Transfection Melanocytes  

and/or fibroblasts 

miR-675 miR-675 inhibit 

melanogenesis 

(245) 

ES-2 and SKOV3 Transfection RMG-1, ES-2 and 

A2780 cell lines 

MMP1 ovarian cancers (246) 

U87 glioblastoma cells Exosome were 

incubate with 

Cy3- fluorescent 

hsiRNAs 

Primary cortical 

neurons were 

isolated from 

E15.5 mouse 

hsiRNAs 

targeting 

Huntingtin 

mRNA 

Huntington's disease (142) 
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HEK-293T cells Transfection Human 

schwannoma cell 

line HEI-193 

Cytosine 

deaminase- 

uracil 

phosphorib

osyltransfe

rase 

schwannoma tumors (140) 

The HEK 293T and 

CHO-K1 cells 

Transfection Rat primary 

pinealocyte cells 

siRNA for 

the 

endogenou

s GTPBP1 

exosome-mediated mRNA 

turnover 

pathway 

(247) 

Bone marrow 

mesenchymal stem 

cells 

Transfection Intestinal 

epithelial cells: 

IEC-6 

miR-200b anti-fibrotic treatment (248) 

MDA-MB-231 (breast) 

cancer cells 

Transfection Fibroblasts miR-9 enhancing the switch to 

CAF phenotype 

(249) 

U87 and X12 cells Transfection Brain 

microvascular 

endothelial cells 

(HBMVEC) 

miR-1 Reduce GBM invasion (250) 

human MCF-7 and 

MDA-MB-231 cells 

transfection HMLE cells miR-10b induce the invasion ability 

of non-malignant HMLE 

cells 

(251) 

Murine dendritic 

Cells 

Electroporation Systemic delivery 

to mice 

α-Syn 

siRNA 

Parkinson's disease (252) 

HEK-293T Transfection C2C12 cell lines MOR 

siRNA 

morphine addiction (151) 

 
 

  
 A

cc
ep

te
d

   A
rt

ic
le

 

 

 

 

 

 

 

 

  

 
 
 


