13 research outputs found

    Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation

    Get PDF
    The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×1034^{34} cm2^{-2}s1^{-1}. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment

    The Apollo ATCA Design for the CMS Track Finder and the Pixel Readout at the HL-LHC

    Full text link
    The challenging conditions of the High-Luminosity LHC require tailored hardware designs for the trigger and data acquisition systems. The Apollo platform features a "Service Module" with a powerful system-on-module computer that provides standard ATCA communications and application-specific "Command Module"s with large FPGAs and high-speed optical fiber links. The CMS version of Apollo will be used for the track finder and the pixel readout. It features up to two large FPGAs and more than 100 optical links with speeds up to 25\,Gb/s. We study carefully the design and performance of the board by using customized firmware to test power consumption, heat dissipation, and optical link integrity. This paper presents the results of these performance tests, design updates, and future plans.Comment: Submitted to JINST Proceedings for TWEPP 202

    Evaluation of planar silicon pixel sensors with the RD53A readout chip for the Phase-2 Upgrade of the CMS Inner Tracker

    No full text
    Abstract: The Large Hadron Collider at CERN will undergo an upgrade in order to increase its luminosity to 7.5 x 1034 cm-2s-1. The increased luminosity during this High-Luminosity running phase, starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50 gm x 50 gm and rectangular 100 gm x 25 gm pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS during the High-Luminosity running phase. A spatial resolution of approximately 3.4 gm (2 gm) is obtained using the modules with 50 gm x 50 gm (100 gm x 25 gm) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of (Deq = 5.3 x 1015 cm-2, a resolution of 9.4 gm is achieved at a bias voltage of 800 V using a module with 50 gm x 50 gm pixel size. All modules retain a hit efficiency in excess of 99% after irradiation to fluences up to 2.1 x 1016 cm-2. Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper

    Evaluation of planar silicon pixel sensors with the RD53A readout chip for the Phase-2 Upgrade of the CMS Inner Tracker

    No full text
    The Large Hadron Collider (LHC) at CERN will undergo an upgrade in order to increase its luminosity to 7.5×10347.5 \times 10^{34} cm2^{-2}s1^{-1}. The increased luminosity during this High-Luminosity running phase\\ (HL-LHC), starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50μ50 \mu m ×  50μ \times \; 50 \mum and rectangular 100μ100 \mu m ×  25μ \times \; 25 \mum pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS at the HL-LHC. A spatial resolution of approximately 3.4μ\mum (2μ\mum) is obtained using the modules with 50μ50 \mu m ×  50μ \times \; 50 \mum (100μ100 \mu m ×  25μ \times \; 25 \mum) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of Φeq=5.3×1015\Phi_{\rm eq} = 5.3 \times 10^{15} cm2^{-2}, a resolution of 9.4μ\mum is achieved at a bias voltage of 800 V using a module with 50μ50 \mu m ×  50μ \times \; 50 \mum pixel size. All modules retain a hit efficiency in excess of 99\% after irradiation to fluences up to 2.1×10162.1 \times 10^{16} cm2^{-2}. Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper.The Large Hadron Collider at CERN will undergo an upgrade inorder to increase its luminosity to7.5 × 1034^{34} cm2^{-2}s1^{-1}. The increased luminosityduring this High-Luminosity running phase, starting around 2029,means a higher rate of proton-proton interactions, hence a largerionizing dose and particle fluence for the detectors. The currenttracking system of the CMS experiment will be fully replaced inorder to cope with the new operating conditions. Prototype planarpixel sensors for the CMS Inner Tracker with square50 μm × 50 μm and rectangular100 μm × 25 μm pixels read out by theRD53A chip were characterized in the lab and at the DESY-II testbeamfacility in order to identify designs that meet the requirements ofCMS during the High-Luminosity running phase. A spatial resolutionof approximately 3.4 μm (2 μm) is obtained using themodules with 50 μm × 50 μm(100 μm × 25 μm) pixels at the optimalangle of incidence before irradiation. After irradiation to a 1 MeVneutron equivalent fluence ofΦeq_{eq} = 5.3 × 1015^{15} cm2^{-2}, a resolution of9.4 μm is achieved at a bias voltage of 800 V using a modulewith 50 μm × 50 μm pixel size. All modulesretain a hit efficiency in excess of 99% after irradiation tofluences up to 2.1 × 1016^{16} cm2^{-2}. Further studies ofthe electrical properties of the modules, especially crosstalk, arealso presented in this paper.The Large Hadron Collider (LHC) at CERN will undergo an upgrade in order to increase its luminosity to 7.5×10347.5 \times 10^{34} cm2^{-2}s1^{-1}. The increased luminosity during this High-Luminosity running phase (HL-LHC), starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50μ50 \mu m ×  50μ \times \; 50 \mum and rectangular 100μ100 \mu m ×  25μ \times \; 25 \mum pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS at the HL-LHC. A spatial resolution of approximately 3.4μ\mum (2μ\mum) is obtained using the modules with 50μ50 \mu m ×  50μ \times \; 50 \mum (100μ100 \mu m ×  25μ \times \; 25 \mum) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of Φeq=5.3×1015\Phi_{\rm eq} = 5.3 \times 10^{15} cm2^{-2}, a resolution of 9.4μ\mum is achieved at a bias voltage of 800 V using a module with 50μ50 \mu m ×  50μ \times \; 50 \mum pixel size. All modules retain a hit efficiency in excess of 99% after irradiation to fluences up to 2.1×10162.1 \times 10^{16} cm2^{-2}. Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper

    Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation

    No full text

    Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation

    No full text
    The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5-7.5×1034 cm-2s-1. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000-4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13-14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment

    Evaluation of HPK n plus -p planar pixel sensors for the CMS Phase-2 upgrade

    No full text
    Abstract: To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 x 1034 cm-2 s-1 in the ultimate performance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionising energy loss of up to ?eq = 3.5 x 1016 cm-2. This paper focuses on planar pixel sensor design and qualification up to a fluence of ?eq = 1.4 x 1016 cm-2. For the development of appropriate planar pixel sensors an R&D program was initiated, which includes n+-p sensors on 150 mm (6") wafers with an active thickness of 150 mu m with pixel sizes of 100 x 25 mu m2 and 50 x 50 mu m2 manufactured by Hamamatsu Photonics K.K. (HPK). Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was an extensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly with ROC4Sens readout chips. It demonstrates that multiple designs fulfil the requirements in terms of breakdown voltage, leakage current and efficiency. The single point resolution for 50 x 50 mu m2 pixels is measured as 4.0 mu m for non-irradiated samples, and 6.3 mu m after irradiation to ?eq = 7.2 x 1015 cm-2

    Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation

    Get PDF
    The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5-7.5×1034\times10^{34} cm2^{-2}s1^{-1}. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000-4000 fb1^{-1} of proton-proton collisions at a center-of-mass energy of 13-14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment

    Measurement of the fractional radiation length of a pixel module for the CMS Phase-2 upgrade via the multiple scattering of positrons

    No full text
    International audienceHigh-luminosity particle collider experiments such as the ones planned at the High-Luminosity Large Hadron Collider require ever-greater vertexing precision of the tracking detectors, necessitating also reductions in the material budget of the detectors. Traditionally, the fractional radiation length (x/X0x/X_0) of detectors is either estimated using known properties of the constituent materials, or measured in dedicated runs of the final detector. In this paper, we present a method of direct measurement of the material budget of a CMS prototype module designed for the Phase-2 upgrade of the CMS detector using a 40-65 MeV positron beam. A total of 630 million events were collected at the Paul Scherrer Institut PiE1 experimental area using a three-plane telescope consisting of the prototype module as the central plane, surrounded by two MALTA monolithic pixel detectors. Fractional radiation lengths were extracted from scattering angle distributions using the Highland approximation for multiple scattering. A statistical technique recovered runs suffering from trigger desynchronisation, and several corrections were introduced to compensate for local inefficiencies related to geometric and beam shape constraints. An overall average x/X0x/X_0 of (0.84 ±\pm 0.10)% across the surveyed regions was measured, which is compatible with an empirical estimate of 0.825% computed from known material properties. Higher-granularity maps of the fractional radiation length were produced for both rectangular regions and regions of uniform material composition. The results bode well for the CMS Phase-2 upgrade modules, which will play a key role in the minimisation of the material budget of the upgraded detector

    Beam Test Performance Studies of CMS Phase-2 Outer Tracker Module Prototypes

    No full text
    International audienceA new tracking detector will be installed as part of the Phase-2 upgrade of the CMS detector for the high-luminosity LHC era. This tracking detector includes the Inner Tracker, equipped with silicon pixel sensor modules, and the Outer Tracker, consisting of modules with two parallel stacked silicon sensors. The Outer Tracker front-end ASICs will be able to correlate hits from charged particles in these two sensors to perform on-module discrimination of transverse momenta pTp_\mathrm{T}. The pTp_\mathrm{T} information is generated at a frequency of 40 MHz and will be used in the Level-1 trigger decision of CMS. Prototypes of the so-called 2S modules were tested at the Test Beam Facility at DESY Hamburg between 2019 and 2020. These modules use the final front-end ASIC, the CMS Binary Chip (CBC), and for the first time the Concentrator Integrated Circuit (CIC), optical readout and on-module power conversion. In total, seven modules were tested, one of which was assembled with sensors irradiated with protons. An important aspect was to show that it is possible to read out modules synchronously. A cluster hit efficiency of about 99.75% was achieved for all modules. The CBC pTp_\mathrm{T} discrimination mechanism has been verified to work together with the CIC and optical readout. The measured module performance meets the requirements for operation in the upgraded CMS tracking detector
    corecore