4 research outputs found

    Exploring DNA methylation patterns in copper exposed Folsomia candida and Enchytraeus crypticus

    Get PDF
    Accumulating evidence shows that epigenetics-mediated phenotypic plasticity plays a role in an organism’s ability to deal with environmental stress. However, to date, the role of epigenetic modifications in response to stress is hardly investigated in soil invertebrates. The main objective of this proof of principle study was to explore whether total cytosine and locus-specific CpG methylation are present in two important ecotoxicological model organisms, the springtail Folsomia candida and the potworm Enchytraeus crypticus, and if so, whether methylation patterns might change with increased toxicant exposure. LC-MS/MS analyses and bisulfite sequencing were performed to identify the CpG methylation state of the organisms. We show here, for the first time, a total level of 1.4% 5-methyl cytosine methylation in the genome of E. crypticus, and an absence of both total cytosine and locus-specific CpG methylation in F. candida. In E. crypticus, methylation of CpG sites was observed in the coding sequence (CDS) of the housekeeping gene Elongation Factor 1α, while the CDS of the stress inducible Heat Shock Protein 70 gene almost lacked methylation. This confirms previous observations that DNA methylation differs between housekeeping and stress-inducible genes in invertebrates. DNA methylation patterns in E. crypticus were not affected by exposure to copper (II) sulfate pentahydrate (CuSO4·5H2O) mixed in with LUFA 2.2 soil at sublethal effect concentrations that decreased reproduction by 10%, 20% and 50%. Although, differences in CpG methylation patterns between specific loci suggest a functional role for DNA methylation in E. crypticus, genome-wide bisulfite sequencing is needed to verify whether environmental stress affects this epigenetic hallmark

    Epidemiology and new developments in the diagnosis of prosthetic joint infection.

    No full text
    Although prosthetic joint infection (PJI) is a rare event after arthroplasty, it represents a significant complication that is associated with high morbidity, need for complex treatment, and substantial healthcare costs. An accurate and rapid diagnosis of PJI is crucial for treatment success. Current diagnostic methods in PJI are insufficient with 10-30% false-negative cultures. Consequently, there is a need for research and development into new methods aimed at improving diagnostic accuracy and speed of detection. In this article, we review available conventional diagnostic methods for the diagnosis of PJI (laboratory markers, histopathology, synovial fluid and periprosthetic tissue cultures), new diagnostic methods (sonication of implants, specific and multiplex PCR, mass spectrometry) and innovative techniques under development (new laboratory markers, microcalorimetry, electrical method, reverse transcription [RT]-PCR, fluorescence in situ hybridization [FISH], biofilm microscopy, microarray identification, and serological tests). The results of highly sensitive diagnostic techniques with unknown specificity should be interpreted with caution. The organism identified by a new method may represent a real pathogen that was unrecognized by conventional diagnostic methods or contamination during specimen sampling, transportation, or processing. For accurate interpretation, additional studies are needed, which would evaluate the long-term outcome (usually >2 years) with or without antimicrobial treatment. It is expected that new rapid, accurate, and fully automatic diagnostic tests will be developed soon

    A CRITICAL REVIEW OF HUMAN HAEMOGLOBIN VARIANTS: PART II: INDIVIDUAL HAEMOGLOBINS

    No full text
    corecore