268 research outputs found
Non-Markovian Levy diffusion in nonhomogeneous media
We study the diffusion equation with a position-dependent, power-law
diffusion coefficient. The equation possesses the Riesz-Weyl fractional
operator and includes a memory kernel. It is solved in the diffusion limit of
small wave numbers. Two kernels are considered in detail: the exponential
kernel, for which the problem resolves itself to the telegrapher's equation,
and the power-law one. The resulting distributions have the form of the L\'evy
process for any kernel. The renormalized fractional moment is introduced to
compare different cases with respect to the diffusion properties of the system.Comment: 7 pages, 2 figure
On the resonance eigenstates of an open quantum baker map
We study the resonance eigenstates of a particular quantization of the open
baker map. For any admissible value of Planck's constant, the corresponding
quantum map is a subunitary matrix, and the nonzero component of its spectrum
is contained inside an annulus in the complex plane, . We consider semiclassical sequences of eigenstates, such that the
moduli of their eigenvalues converge to a fixed radius . We prove that, if
the moduli converge to , then the sequence of eigenstates
converges to a fixed phase space measure . The same holds for
sequences with eigenvalue moduli converging to , with a different
limit measure . Both these limiting measures are supported on
fractal sets, which are trapped sets of the classical dynamics. For a general
radius , we identify families of eigenstates with
precise self-similar properties.Comment: 32 pages, 2 figure
Spectral problems in open quantum chaos
This review article will present some recent results and methods in the study
of 1-particle quantum or wave scattering systems, in the semiclassical/high
frequency limit, in cases where the corresponding classical/ray dynamics is
chaotic. We will focus on the distribution of quantum resonances, and the
structure of the corresponding metastable states. Our study includes the toy
model of open quantum maps, as well as the recent quantum monodromy operator
method.Comment: Compared with the previous version, misprints and typos have been
corrected, and the bibliography update
Fractional differentiability of nowhere differentiable functions and dimensions
Weierstrass's everywhere continuous but nowhere differentiable function is
shown to be locally continuously fractionally differentiable everywhere for all
orders below the `critical order' 2-s and not so for orders between 2-s and 1,
where s, 1<s<2 is the box dimension of the graph of the function. This
observation is consolidated in the general result showing a direct connection
between local fractional differentiability and the box dimension/ local Holder
exponent. Levy index for one dimensional Levy flights is shown to be the
critical order of its characteristic function. Local fractional derivatives of
multifractal signals (non-random functions) are shown to provide the local
Holder exponent. It is argued that Local fractional derivatives provide a
powerful tool to analyze pointwise behavior of irregular signals.Comment: minor changes, 19 pages, Late
Stability of Coalescence Hidden variable Fractal Interpolation Surfaces
In the present paper, the stability of Coalescence Hidden variable Fractal
Interpolation Surfaces(CHFIS) is established. The estimates on error in
approximation of the data generating function by CHFIS are found when there is
a perturbation in independent, dependent and hidden variables. It is proved
that any small perturbation in any of the variables of generalized
interpolation data results in only small perturbation of CHFIS. Our results are
likely to be useful in investigations of texture of surfaces arising from the
simulation of surfaces of rocks, sea surfaces, clouds and similar natural
objects wherein the generating function depends on more than one variable
Fractal Weyl law for Linux Kernel Architecture
We study the properties of spectrum and eigenstates of the Google matrix of a
directed network formed by the procedure calls in the Linux Kernel. Our results
obtained for various versions of the Linux Kernel show that the spectrum is
characterized by the fractal Weyl law established recently for systems of
quantum chaotic scattering and the Perron-Frobenius operators of dynamical
maps. The fractal Weyl exponent is found to be that
corresponds to the fractal dimension of the network . The
eigenmodes of the Google matrix of Linux Kernel are localized on certain
principal nodes. We argue that the fractal Weyl law should be generic for
directed networks with the fractal dimension .Comment: RevTex 6 pages, 7 figs, linked to arXiv:1003.5455[cs.SE]. Research at
http://www.quantware.ups-tlse.fr/, Improved version, changed forma
Rates of convergence of nonextensive statistical distributions to Levy distributions in full and half spaces
The Levy-type distributions are derived using the principle of maximum
Tsallis nonextensive entropy both in the full and half spaces. The rates of
convergence to the exact Levy stable distributions are determined by taking the
N-fold convolutions of these distributions. The marked difference between the
problems in the full and half spaces is elucidated analytically. It is found
that the rates of convergence depend on the ranges of the Levy indices. An
important result emerging from the present analysis is deduced if interpreted
in terms of random walks, implying the dependence of the asymptotic long-time
behaviors of the walks on the ranges of the Levy indices if N is identified
with the total time of the walks.Comment: 20 page
Hypersensitivity and chaos signatures in the quantum baker's maps
Classical chaotic systems are distinguished by their sensitive dependence on
initial conditions. The absence of this property in quantum systems has lead to
a number of proposals for perturbation-based characterizations of quantum
chaos, including linear growth of entropy, exponential decay of fidelity, and
hypersensitivity to perturbation. All of these accurately predict chaos in the
classical limit, but it is not clear that they behave the same far from the
classical realm. We investigate the dynamics of a family of quantizations of
the baker's map, which range from a highly entangling unitary transformation to
an essentially trivial shift map. Linear entropy growth and fidelity decay are
exhibited by this entire family of maps, but hypersensitivity distinguishes
between the simple dynamics of the trivial shift map and the more complicated
dynamics of the other quantizations. This conclusion is supported by an
analytical argument for short times and numerical evidence at later times.Comment: 32 pages, 6 figure
Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives
The classical fields with fractional derivatives are investigated by using
the fractional Lagrangian formulation.The fractional Euler-Lagrange equations
were obtained and two examples were studied.Comment: 9 page
Fractional Systems and Fractional Bogoliubov Hierarchy Equations
We consider the fractional generalizations of the phase volume, volume
element and Poisson brackets. These generalizations lead us to the fractional
analog of the phase space. We consider systems on this fractional phase space
and fractional analogs of the Hamilton equations. The fractional generalization
of the average value is suggested. The fractional analogs of the Bogoliubov
hierarchy equations are derived from the fractional Liouville equation. We
define the fractional reduced distribution functions. The fractional analog of
the Vlasov equation and the Debye radius are considered.Comment: 12 page
- …