The Levy-type distributions are derived using the principle of maximum
Tsallis nonextensive entropy both in the full and half spaces. The rates of
convergence to the exact Levy stable distributions are determined by taking the
N-fold convolutions of these distributions. The marked difference between the
problems in the full and half spaces is elucidated analytically. It is found
that the rates of convergence depend on the ranges of the Levy indices. An
important result emerging from the present analysis is deduced if interpreted
in terms of random walks, implying the dependence of the asymptotic long-time
behaviors of the walks on the ranges of the Levy indices if N is identified
with the total time of the walks.Comment: 20 page