37 research outputs found

    Caractérisation de la variabilité interindividuelle de la toxicocinétique des composés organiques volatils

    Full text link
    Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal

    Incorporating New Technologies Into Toxicity Testing and Risk Assessment: Moving From 21st Century Vision to a Data-Driven Framework

    Get PDF
    Based on existing data and previous work, a series of studies is proposed as a basis toward a pragmatic early step in transforming toxicity testing. These studies were assembled into a data-driven framework that invokes successive tiers of testing with margin of exposure (MOE) as the primary metric. The first tier of the framework integrates data from high-throughput in vitro assays, in vitro-to-in vivo extrapolation (IVIVE) pharmacokinetic modeling, and exposure modeling. The in vitro assays are used to separate chemicals based on their relative selectivity in interacting with biological targets and identify the concentration at which these interactions occur. The IVIVE modeling converts in vitro concentrations into external dose for calculation of the point of departure (POD) and comparisons to human exposure estimates to yield a MOE. The second tier involves short-term in vivo studies, expanded pharmacokinetic evaluations, and refined human exposure estimates. The results from the second tier studies provide more accurate estimates of the POD and the MOE. The third tier contains the traditional animal studies currently used to assess chemical safety. In each tier, the POD for selective chemicals is based primarily on endpoints associated with a proposed mode of action, whereas the POD for nonselective chemicals is based on potential biological perturbation. Based on the MOE, a significant percentage of chemicals evaluated in the first 2 tiers could be eliminated from further testing. The framework provides a risk-based and animal-sparing approach to evaluate chemical safety, drawing broadly from previous experience but incorporating technological advances to increase efficiency

    The use of biomonitoring equivalents for interpreting blood concentrations in population studies: a case for polychlorinated biphenyls

    No full text
    A number of exposure guideline values for environmental contaminants are established by various agencies for risk assessment purposes. Biomonitoring equivalents are conversions of external guideline values to internal doses, against which biomonitoring data can be directly compared. Several biomonitoring equivalents have been developed for the interpretation of blood concentrations of environmental contaminants, but none has yet been developed for polychlorinated biphenyls (PCBs). In this paper, we describe information needed to develop biomonitoring equivalents for PCBs and discuss anticipated challenges. We provide a broad overview of PCB absorption, distribution, metabolism and excretion, PCB guideline values, and PCB pharmacokinetic modeling efforts in animals and humans. We also provide strategies to address anticipated challenges in deriving biomonitoring equivalents for this complex contaminant. Biomonitoring equivalents will be useful for the interpretation of the PCB biomonitoring data that is currently available for populations around the globe through national surveys and research of specific populations

    Biomonitoring Equivalents for selenium

    No full text
    Selenium is an essential nutrient for human health with a narrow range between essentiality and toxicity. Selenium is incorporated into several proteins that perform important functions in the body. With insufficient selenium intake, the most notable effect is Keshan disease, an endemic cardiomyopathy in children. Conversely, excessive selenium intake can result in selenosis, manifested as brittle nails and hair and gastro-intestinal disorders. As such, guidance values have been established to protect against both insufficient and excessive selenium exposures. Dietary Reference Intakes (DRIs) have been established as standard reference values for nutritional adequacy in North America. To protect against selenosis resulting from exposure to excessive amounts of selenium, several government and non-governmental agencies have established a range of guidance values. Exposure to selenium is primarily through the diet, but monitoring selenium intake is difficult. Biomonitoring is a useful means of assessing and monitoring selenium status for both insufficient and excessive exposures. However, to be able to interpret selenium biomonitoring data, levels associated with both DRIs and toxicity guidance values are required. Biomonitoring Equivalents (BEs) were developed for selenium in whole blood, plasma and urine. The BEs associated with assuring adequate selenium intake (Estimated Average Requirements - EAR) are 100, 80 and 10. μg/L in whole blood, plasma and urine, respectively. The BEs associated with protection against selenosis range from 400 to 480. μg/L in whole blood, 180-230. μg/L in plasma, and 90-110. μg/L in urine. These BE values can be used by both regulatory agencies and public health officials to interpret selenium biomonitoring data in a health risk context

    Biomonitoring equivalents for interpretation of urinary iodine

    No full text
    Iodine is an essential nutrient whose deficiency or excess exposure can cause adverse health effects. The primary sources of iodine exposure in the general population are iodized salt, dairy products, bread and sea food. Urinary iodine concentrations (UIC) have been measured by Canadian Health Measures Survey (CHMS) and US National Health and Nutrition Examination Survey (NHANES). The Institute of Medicine (IOM), the US Agency for Toxic Substances and Disease Registry (ATSDR) and World Health Organization (WHO) have established exposure guidance values for nutrition (IOM Estimated Average Requirement (EAR), Recommended Dietary Allowance (RDA), WHO Recommended Nutrient Intake (RNI)) and toxicity (IOM Tolerable Upper Intake Level (UL); ATSDR Minimal Risk Level (MRL), WHO International Programme on Chemical Safety (IPCS) Tolerable Daily Intake (TDI)). Using a urinary excretion fraction of 0.9, Biomonitoring Equivalents (BE) for the EAR, RDA, UL and MRL were derived for adults (60, 100, 730 and 450 μg/L, respectively) and children (50, 80, 580 and 360 μg/L, respectively). The population median UIC values from NHANES and CHMS for adults (140–181, 122–126 μg/L, respectively) and children (232, 189 μg/L, respectively) were above the criteria for assessing iodine nutrition, indicating that US and Canadian populations are likely to have adequate population iodine nutrition. The median UIC from NHANES and CHMS do not exceed BE values derived from exposure guidance values for toxicity

    Biomonitoring Equivalents for triclosan

    No full text
    Recent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite(s) in a biological medium (blood, urine, or other medium) consistent with an existing health-based exposure guideline, and are derived by integrating available data on pharmacokinetics with existing chemical risk assessments. This study reviews available health-based exposure guidance values for triclosan based on recent evaluations from the United States Environmental Protection Agency (US EPA), the European Commission's Scientific Committee on Consumer Products (EC SCCP) and the Australian National Industrial Chemicals Notification and Assessment Scheme (NICNAS). BE values corresponding to the reference dose (RfD) or margin of safety (MOS) targets from these agencies were derived based on kinetic data (urinary excretion and plasma clearance) from human studies and measured blood concentration data in animal studies. Estimated BE values for urinary total triclosan (free plus conjugates) corresponding to the US EPA RfD and the EC-identified margin of safety target from the NOAEL are 6.4 and 2.6. mg/L, respectively (corresponding to 8.3 and 3.3. mg/g creatinine, respectively). Plasma BE values corresponding to the US EPA, EC, and Australian NICNAS values are 0.3, 0.9, and 0.4. mg/L, respectively. These values may be used as screening tools for evaluation of population biomonitoring data for triclosan in a risk assessment context

    Biomonitoring equivalents for hexachlorobenzene

    No full text
    Recent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guideline. This study reviews available health-based exposure guidance values for hexachlorobenzene (HCB) from Health Canada, the United States Environmental Protection Agency (US EPA), the US Agency for Toxic Substances and Disease Registry (ATSDR) and World Health Organization (WHO). HCB liver tissue concentrations in chronic rodent bioassays and information on human elimination rates and tissue distribution of HCB were extrapolated to estimate serum lipid-adjusted HCB concentrations that are consistent with the exposure guidance values for HCB. Estimated serum lipid-adjusted HCB concentrations ranging from 16 to 250. ng/g lipid were consistent with non-cancer-based exposure guidance values from various agencies. Concentrations associated with cancer risk-specific doses at target risk levels of interest were also estimated. These BE values may be used as screening tools for evaluation of population biomonitoring data for HCB in a risk assessment context and can assist in prioritization of the potential need for additional risk assessment efforts for HCB relative to other chemicals

    Biomonitoring Equivalents for bisphenol A (BPA)

    No full text
    Recent efforts worldwide have resulted in a growing database of measured concentrations of chemicals in blood and urine samples taken from the general population. However, few tools exist to assist in the interpretation of the measured values in a health risk context. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guideline. BE values are derived by integrating available data on pharmacokinetics with existing chemical risk assessments. This study reviews available health-based exposure guidance values for bisphenol A (BPA) from Health Canada, the United States Environmental Protection Agency (USEPA) and the European Food Safety Authority (EFSA). BE values were derived based on data on BPA urinary excretion in humans. The BE value corresponding to the oral provisional tolerable daily intake (pTDI) of 25μg/kg-d from Health Canada is 1. mg/L (1.3. mg/g creatinine); value corresponding to the US EPA reference dose (RfD) and EFSA tolerable daily intake (TDI) estimates (both of which are equal to 50μg/kg-d) is 2. mg/L (2.6. mg/g creatinine). These values are estimates of the 24-h average urinary BPA concentrations that are consistent with steady-state exposure at the respective exposure guidance values. These BE values may be used as screening tools for evaluation of central tendency measures of population biomonitoring data for BPA in a risk assessment context and can assist in prioritization of the potential need for additional risk assessment efforts for BPA relative to other chemicals

    Biomonitoring Equivalents for inorganic arsenic

    No full text
    This paper presents Biomonitoring Equivalents (BEs) for inorganic arsenic. Biomonitoring Equivalents (BEs) are defined as the concentration or range of concentrations of a chemical or its metabolite in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guideline, and are derived by integrating available data on pharmacokinetics with existing chemical risk assessments. This study reviews available health-based exposure guidance values for arsenic based on recent evaluations from the United States Environmental Protection Agency (US EPA), US Agency for Toxic Substances and Disease Registry (ATSDR) and Health Canada (HC). BE values corresponding to the Reference Dose (RfD) or risk-specific doses for cancer endpoints from these agencies were derived based on kinetic data (urinary excretion) from controlled dosing studies in humans. The BE values presented here provide estimates of the sum of inorganic arsenic-derived urinary biomarkers (inorganic arsenic, monomethylated arsenic, and dimethylated arsenic). The BE associated with the United States Environmental Protection Agency's Reference Dose and the Agency for Toxic Substances and Disease Registry's Minimal Risk Level is 6.4μg arsenic/L urine. The BEs associated with the various cancer risk assessments are significantly lower. These BE values may be used as screening tools for evaluation of biomonitoring data for inorganic arsenic in a public health risk context
    corecore