130 research outputs found
The Content of Mineral Elements of Various Forage Crops Cultivated in Polder Fields
干拓地の新造成畑において数種飼料作物を栽培し,家畜栄養に必須の主なミネラル元素含量について比較検討した.実験結果の要約はつぎのようである. 1)ほとんどの元素の含量に草種間で有意差を生じたが,使用した土壌改良剤間に一定の傾向は認められなかった. 2)それらを熟飼料畑に栽培された各飼料作物中の含量と比較した結果,P及びKを除く各元素に有意差は検出されなかった. 以上のことから,本飼料畑で栽培される草類のミネラル含量は,一般の飼料畑で慣行法によって栽培されるそれらと,大きく異なるものではないと考えられる
Purification, crystallization and preliminary X-ray diffraction studies of N-acetylglucosamine-phosphate mutase from Candida albicans
Preliminary X-ray diffraction studies on N-acetylglucosamine-phosphate mutase from C. albicans are reported
Intake of Radionuclides in the Trees of Fukushima Forests 4. Binding of Radioiodine to Xyloglucan
The 1, 4-linked glucans such as xyloglucan and amylose are known to form a complex with iodine/iodide ions and to also be precipitated with CaCl2 in the presence of iodine. Here, we show that iodine gas could be specifically incorporated into xyloglucan. Furthermore, we show that [125I]I2 gas is, over time, incorporated at high levels into the entire outer surface of poplar seedlings but that spraying seedlings with abscisic acid to close stomata decreases the incorporation of the gas. There was less incorporation of the gas in a transgenic poplar overexpressing xyloglucanase at the early stages when compared with a wild type. This shows that xyloglucan serves as a key absorber of iodine gas into a plant body. After individual leaves of cultured seedlings were exposed to the gas for 30 min, no radioiodine was emitted from those leaves over the following two weeks, indicating that no turnover occurs in radioiodine once it is bound to the polysaccharides in plant tissues. We conclude that forest trees could serve as one of the largest enormous capture systems for the radioiodine fallout following the nuclear power plant accident in Fukushima
RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels.
International audienceThe molecular organization of presynaptic active zones is important for the neurotransmitter release that is triggered by depolarization-induced Ca2+ influx. Here, we demonstrate a previously unknown interaction between two components of the presynaptic active zone, RIM1 and voltage-dependent Ca2+ channels (VDCCs), that controls neurotransmitter release in mammalian neurons. RIM1 associated with VDCC beta-subunits via its C terminus to markedly suppress voltage-dependent inactivation among different neuronal VDCCs. Consistently, in pheochromocytoma neuroendocrine PC12 cells, acetylcholine release was significantly potentiated by the full-length and C-terminal RIM1 constructs, but membrane docking of vesicles was enhanced only by the full-length RIM1. The beta construct beta-AID dominant negative, which disrupts the RIM1-beta association, accelerated the inactivation of native VDCC currents, suppressed vesicle docking and acetylcholine release in PC12 cells, and inhibited glutamate release in cultured cerebellar neurons. Thus, RIM1 association with beta in the presynaptic active zone supports release via two distinct mechanisms: sustaining Ca2+ influx through inhibition of channel inactivation, and anchoring neurotransmitter-containing vesicles in the vicinity of VDCCs
Multifunctional Actions of Ninjinyoeito, a Japanese Kampo Medicine: Accumulated Scientific Evidence Based on Experiments With Cells and Animal Models, and Clinical Studies
Herbal medicines are currently employed for the treatment of several types of diseases, and also employed for the improvement of Quality of Life (QOL) of patients over the world, in particular, in Asian countries. In Japan, a Japanese herbal medicine namely kampo medicine has been prescribed for the improvement of QOL of patients. Ninjinyoeito (NYT), composed of 12 herbal plants, is one of kampo medicines and used for helping recovery of diseases and improving several symptoms that suffer patients such as anemia, anorexia and fatigue. Recent scientific research approaches to kampo medicines with cells and animal models enable to prove that NYT has multiple functions for improvement of symptoms. Also, clinical studies using NYT support such actions to be widely used for the improvement of symptoms that reduce the QOL of patients
Medium-chain fatty acids suppress lipotoxicity-induced hepatic fibrosis via the immunomodulating receptor GPR84
食事性肥満から肝炎発症に関わる制御因子の同定 --中鎖脂肪酸油による予防・GPR84標的NASH治療薬の可能性--. 京都大学プレスリリース. 2023-01-18.Medium-chain triglycerides (MCTs), which consist of medium-chain fatty acids (MCFAs), are unique forms of dietary fat with various health benefits. G protein–coupled 84 (GPR84) acts as a receptor for MCFAs (especially C10:0 and C12:0); however, GPR84 is still considered an orphan receptor, and the nutritional signaling of endogenous and dietary MCFAs via GPR84 remains unclear. Here, we showed that endogenous MCFA-mediated GPR84 signaling protected hepatic functions from diet-induced lipotoxicity. Under high-fat diet (HFD) conditions, GPR84-deficient mice exhibited nonalcoholic steatohepatitis (NASH) and the progression of hepatic fibrosis but not steatosis. With markedly increased hepatic MCFA levels under HFD, GPR84 suppressed lipotoxicity-induced macrophage overactivation. Thus, GPR84 is an immunomodulating receptor that suppresses excessive dietary fat intake–induced toxicity by sensing increases in MCFAs. Additionally, administering MCTs, MCFAs (C10:0 or C12:0, but not C8:0), or GPR84 agonists effectively improved NASH in mouse models. Therefore, exogenous GPR84 stimulation is a potential strategy for treating NASH
Guideline for Hereditary Angioedema (HAE) 2010 by the Japanese Association for Complement Research - Secondary Publication
ABSTRACTThis guideline was provided by the Japanese Association for Complement Research targeting clinicians for making an accurate diagnosis of hereditary angioedema (HAE), and for prompt treatment of the HAE patient in Japan. This is a 2010 year version and will be updated according to any pertinent medical advancements
Parkinson’s disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling
Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability
Evaluation of range of motion restriction within the hip joint
In Total Hip Arthroplasty, determining the impingement free range of motion requirement is a complex task. This is because in the native hip, motion is restricted by both impingement as well as soft tissue restraint. The aim of this study is to determine a range of motion benchmark which can identify motions which are at risk from impingement and those which are constrained due to soft tissue. Two experimental methodologies were used to determine motions which were limited by impingement and those motions which were limited by both impingement and soft tissue restraint. By comparing these two experimental results, motions which were limited by impingement were able to be separated from those motions which were limited by soft tissue restraint. The results show motions in extension as well as flexion combined with adduction are limited by soft tissue restraint. Motions in flexion, flexion combined with abduction and adduction are at risk from osseous impingement. Consequently, these motions represent where the maximum likely damage will occur in femoroacetabular impingement or at most risk of prosthetic impingement in Total Hip Arthroplasty
- …