1,672 research outputs found
Nucleosynthesis in Type Ia Supernovae
Among the major uncertainties involved in the Chandrasekhar mass models for
Type Ia supernovae are the companion star of the accreting white dwarf (or the
accretion rate that determines the carbon ignition density) and the flame speed
after ignition. We present nucleosynthesis results from relatively slow
deflagration (1.5 - 3 % of the sound speed) to constrain the rate of accretion
from the companion star. Because of electron capture, a significant amount of
neutron-rich species such as ^{54}Cr, ^{50}Ti, ^{58}Fe, ^{62}Ni, etc. are
synthesized in the central region. To avoid the too large ratios of
^{54}Cr/^{56}Fe and ^{50}Ti/^{56}Fe, the central density of the white dwarf at
thermonuclear runaway must be as low as \ltsim 2 \e9 \gmc. Such a low central
density can be realized by the accretion as fast as \dot M \gtsim 1 \times
10^{-7} M_\odot yr^{-1}. These rapidly accreting white dwarfs might correspond
to the super-soft X-ray sources.Comment: 10 page LaTeX, 7 PostScript figures, to appear in Nuclear Physics A,
Vol. A621 (1997
Metallicity structure in X-ray bright galaxy groups
Using Chandra X-ray data of a sample of 15 X-ray bright galaxy groups, we
present preliminary results of a coherent study of the radial distribution of
metal abundances in the hot gas in groups. The iron content in group outskirts
is found to be lower than in clusters by a factor of ~2, despite showing mean
levels in the central regions comparable to those of clusters. The abundance
profiles are used to constrain the contribution from supernovae type Ia and II
to the chemical enrichment and thermal energy of the intragroup medium at
different group radii. The results suggest a scenario in which a substantial
fraction of the chemical enrichment of groups took place in filaments prior to
group collapse.Comment: 5 pages, 2 figures. To appear in the proceedings of ESO Astrophysics
Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V.
Ivanov, J. Burissova (Springer
Evolution of Rotating Accreting White Dwarfs and the Diversity of Type Ia Supernovae
Type Ia supernovae (SNe Ia) have relatively uniform light curves and spectral
evolution, which make SNe Ia useful standard candles to determine cosmological
parameters. However, the peak brightness is not completely uniform, and the
origin of the diversity has not been clear. We examine whether the rotation of
progenitor white dwarfs (WDs) can be the important source of the diversity of
the brightness of SNe Ia. We calculate the structure of rotating WDs with an
axisymmetric hydrostatic code. The diversity of the mass induced by the
rotation is ~0.08 Msun and is not enough to explain the diversity of
luminosity. However, we found the following relation between the initial mass
of the WDs and their final state; i.e., a WD of smaller initial mass will
rotate more rapidly before the supernova explosion than that of larger initial
mass. This result might explain the dependence of SNe Ia on their host
galaxies.Comment: 7 pages, 6 figure
Nucleosynthesis in Type II Supernovae
Presupernova evolution and explosive nucleosynthesis in massive stars for
main-sequence masses from 13 to 70 are calculated. We
examine the dependence of the supernova yields on the stellar mass,
^{12}C(\alpha, \gamma) ^{16}O} rate, and explosion energy. The supernova
yields integrated over the initial mass function are compared with the solar
abundances.Comment: 1 Page Latex source, 10 PostScript figures, to appear in Nuclear
Physics A, Vol. A616 (1997
The Connection between Gamma-Ray Bursts and Extremely Metal-Poor Stars as Nucleosynthetic Probes of the Early Universe
The connection between the long GRBs and Type Ic Supernovae (SNe) has
revealed the interesting diversity: (i) GRB-SNe, (ii) Non-GRB Hypernovae (HNe),
(iii) X-Ray Flash (XRF)-SNe, and (iv) Non-SN GRBs (or dark HNe). We show that
nucleosynthetic properties found in the above diversity are connected to the
variation of the abundance patterns of extremely-metal-poor (EMP) stars, such
as the excess of C, Co, Zn relative to Fe. We explain such a connection in a
unified manner as nucleosynthesis of hyper-aspherical (jet-induced) explosions
Pop III core-collapse SNe. We show that (1) the explosions with large energy
deposition rate, , are observed as GRB-HNe and their yields
can explain the abundances of normal EMP stars, and (2) the explosions with
small are observed as GRBs without bright SNe and can be
responsible for the formation of the C-rich EMP (CEMP) and the hyper metal-poor
(HMP) stars. We thus propose that GRB-HNe and the Non-SN GRBs (dark HNe) belong
to a continuous series of BH-forming stellar deaths with the relativistic jets
of different .Comment: 8 pages, 6 figures. To appear in "Massive Stars as Cosmic Engines",
Proceedings of IAU Symposium 250 (December 2007, Kauai), eds. F. Bresolin,
P.A. Crowther, & J. Puls (Cambridge Univ. Press
The Initial mass function of the first stars inferred from extremely metal-poor stars
This is an author-created, un-copyedited version of an article published in The Astrophysical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-4357/aab3de.We compare the elemental abundance patterns of ~200 extremely metal-poor (EMP; [Fe/H] < −3) stars to the supernova yields of metal-free stars, in order to obtain insights into the characteristic masses of the first (Population III or Pop III) stars in the universe. The supernova yields are prepared with nucleosynthesis calculations of metal-free stars with various initial masses (M = 13, 15, 25, 40 and 100 M ⊙) and explosion energies (E 51 = E/1051[erg] = 0.5–60), to include low-energy, normal-energy, and high-energy explosions. We adopt the mixing-fallback model, to take into account possible asymmetry in the supernova explosions, and the yields that best fit the observed abundance patterns of the EMP stars are searched by varying the model parameters. We find that the abundance patterns of the EMP stars are predominantly best-fitted by the supernova yields with initial masses M < 40 M ⊙, and that more than than half of the stars are best-fitted by the M = 25 M ⊙ hypernova (E 51 = 10) models. The results also indicate that the majority of the primordial supernovae have ejected 10−2–10−1 M ⊙ of 56Ni, leaving behind a compact remnant (either a neutron star or a black hole), with a mass in the range of ~1.5–5 M ⊙. These results suggest that the masses of the first stars responsible for the first metal enrichment are predominantly <40 M ⊙. This implies that the higher-mass first stars were either less abundant, directly collapsed into a black hole without ejecting heavy elements, or a supernova explosion of a higher-mass first star inhibits the formation of the next generation of low-mass stars at [Fe/H] < −3.Peer reviewedFinal Accepted Versio
Does mass accretion lead to field decay in neutron stars
The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars
Properties of Type II Plateau Supernova SNLS-04D2dc: Multicolor Light Curves of Shock Breakout and Plateau
Shock breakout is the brightest radiative phenomenon in a Type II supernova
(SN). Although it was predicted to be bright, the direct observation is
difficult due to the short duration and X-ray/ultraviolet-peaked spectra. First
entire observations of the shock breakouts of Type II Plateau SNe (SNe IIP)
were reported in 2008 by ultraviolet and optical observations by the {\it
GALEX} satellite and supernova legacy survey (SNLS), named SNLS-04D2dc and
SNLS-06D1jd. We present multicolor light curves of a SN IIP, including the
shock breakout and plateau, calculated with a multigroup radiation
hydrodynamical code {\sc STELLA} and an evolutionary progenitor model. The
synthetic multicolor light curves reproduce well the observations of
SNLS-04D2dc. This is the first study to reproduce the ultraviolet light curve
of the shock breakout and the optical light curve of the plateau consistently.
We conclude that SNLS-04D2dc is the explosion with a canonical explosion energy
ergs and that its progenitor is a star with a zero-age
main-sequence mass and a presupernova radius . The
model demonstrates that the peak apparent -band magnitude of the shock
breakout would be mag if a SN being identical to
SNLS-04D2dc occurs at a redshift , which can be reached by 8m-class
telescopes. The result evidences that the shock breakout has a great potential
to detect SNe IIP at z\gsim1.Comment: 5 pages, 5 figures. Accepted for publication in the Astrophysical
Journal Letter
Stability of the r-modes in white dwarf stars
Stability of the r-modes in rapidly rotating white dwarf stars is
investigated. Improved estimates of the growth times of the
gravitational-radiation driven instability in the r-modes of the observed DQ
Her objects are found to be longer (probably considerably longer) than 6x10^9y.
This rules out the possibility that the r-modes in these objects are emitting
gravitational radiation at levels that could be detectable by LISA. More
generally it is shown that the r-mode instability can only be excited in a very
small subset of very hot (T>10^6K), rather massive (M>0.9M_sun) and very
rapidly rotating (P_min<P<1.2P_min) white dwarf stars. Further, the growth
times of this instability are so long that these conditions must persist for a
very long time (t>10^9y) to allow the amplitude to grow to a dynamically
significant level. This makes it extremely unlikely that the r-mode instability
plays a significant role in any real white dwarf stars.Comment: 5 Pages, 5 Figures, revte
- …