16 research outputs found

    Triphenyltin and intra-axonal Ca2+ mobilization

    Get PDF
    Triphenyltin (TPT) is an organotin compound causing environmental hazard to many wild creatures. Our previous findings show that TPT increases of the frequency of spontaneous glycinergic inhibitory postsynaptic currents (sIPSCs) in rat spinal neurons without changing the amplitude and 1/e decay time. In our study, the effects of 2-aminoethoxydiphenyl borate (2-APB), dantrolene sodium, and thapsigargin on sIPSC frequency were examined to reveal the contribution of intra-axonal Ca2+ mobilization by adding TPT. 2-APB considerably attenuated the TPT-induced facilitation of sIPSC frequency while dantrolene almost completely masked the TPT effects, suggesting that the TPT-induced synaptic facilitation results from the activation of both IP3 and ryanodine receptors on endoplasmic reticulum (ER) membrane, though inositol triphosphate (IP3) receptor is less sensitive to TPT. Thapsigargin itself significantly increased the sIPSC frequency without affecting the current amplitude and decay time. Successive addition of TPT could not further increase the sIPSC frequency in the presence of thapsigargin, indicating that thapsigargin completely masked the facilitatory action of TPT. Results suggest that TPT activates the IP3 and ryanodine receptors while TPT inhibits the Ca2+-pump of ER membranes, resulting in the elevation of intra-axonal Ca2+ levels, leading to the increase of spontaneous glycine release from synaptic vesicles

    Triphenyltin and glycinergic transmission

    Get PDF
    Glycine is a fast inhibitory transmitter like γ-aminobutyric acid in the mammalian spinal cord and brainstem, and it is involved in motor reflex, nociception, and neuronal development. Triphenyltin (TPT) is an organometallic compound causing environmental hazard to many wild creatures. Our previous findings show that TPT ultimately induces a drain and/or exhaustion of glutamate in excitatory presynaptic nerve terminals, resulted in blockage of neurotransmission as well as methylmercury. Therefore, we have investigated the neurotoxic mechanism how TPT modulates inhibitory glycinergic transmission in the synaptic bouton preparation of rat isolated spinal neurons using a patch clamp technique. TPT at environmentally relevant concentrations (3–300 nM) significantly increased the number of frequency of glycinergic spontaneous and miniature inhibitory postsynaptic currents (sIPSC and mIPSC) without affecting the current amplitude and decay time. The TPT effects were also observed in external Ca2+-free solution containing tetrodotoxin (TTX) but removed in Ca2+-free solution with both TTX and BAPTA-AM (Ca2+ chelator). On the other hand, the amplitude of glycinergic evoked inhibitory postsynaptic currents (eIPSCs) increased with decreasing failure rate (Rf) and paired pulse ratio (PPR) in the presence of 300 nM TPT. At a high concentration (1 μM), TPT completely blocked eIPSCs after a transient facilitation. Overall, these results suggest that TPT directly acts transmitter-releasing machinery in glycinergic nerve terminals. Effects of TPT on the nerve terminals releasing fast transmitters were greater in the order of glycinergic > glutamatergic > GABAergic ones. Thus, TPT is supposed to cause a strong synaptic modulations on glycinergic neurotransmission in wild creatures

    Prediction model for long-term seizure and developmental outcomes among children with infantile epileptic spasms syndrome

    Get PDF
    IntroductionChildren with infantile epileptic spasms syndrome (IESS) are likely to experience poor outcomes. Researchers have investigated the factors related to its long-term prognosis; however, none of them developed a predictive model.ObjectiveThis study aimed to clarify the factors that influence the long-term prognosis of seizures and their development and to create a prediction model for IESS.Materials and methodsWe conducted a retrospective cohort study enrolling participants diagnosed with IESS at the Tottori University Hospital. We examined the seizure and developmental status at 3 and 7 years after the IESS onset and divided the participants into favorable and poor outcome groups. Subsequently, we analyzed the factors associated with the poor outcome group and developed a prediction model at 3 years by setting cutoff values using the receiver operating characteristic curve.ResultsData were obtained from 44 patients with IESS (19 female patients and 25 male patients). Three years after epileptic spasms (ES) onset, seizure and development were the poor outcomes in 15 (34.9%) and 27 (61.4%) patients, respectively. The persistence of ES or tonic seizures (TS) after 90 days of onset, moderate or severe magnetic resonance imaging abnormalities, and developmental delay before IESS onset were significantly associated with poor outcomes. Seven years after the onset of ES, seizures and development were the poor outcomes in 9 (45.0%) and 13 (72.2%) patients, respectively. We found that no factor was significantly associated with poor seizure outcomes, and only developmental delay before IESS onset was significantly associated with poor developmental outcomes. Our prediction model demonstrated 86.7% sensitivity and 64.3% specificity for predicting poor seizure outcomes and 88.9% sensitivity and 100% specificity for predicting poor developmental outcomes.ConclusionOur prediction model may be useful for predicting the long-term prognosis of seizures and their development after 3 years. Understanding the long-term prognosis during the initial treatment may facilitate the selection of appropriate treatment

    Effect of Saxagliptin on Endothelial Function in Patients with Type 2 Diabetes : A Prospective Multicenter Study

    Get PDF
    The dipeptidyl peptidase-4 inhibitor saxagliptin is a widely used antihyperglycemic agent in patients with type 2 diabetes. The purpose of this study was to evaluate the effects of saxagliptin on endothelial function in patients with type 2 diabetes. This was a prospective, multicenter, interventional study. A total of 34 patients with type 2 diabetes were enrolled at four university hospitals in Japan. Treatment of patients was initially started with saxagliptin at a dose of 5 mg daily. Assessment of endothelial function assessed by flow-mediated vasodilation (FMD) and measurement of stromal cell-derived factor-1α (SDF-1α) were conducted at baseline and at 3 months after treatment with saxagliptin. A total of 31 patients with type 2 diabetes were included in the analysis. Saxagliptin significantly increased FMD from 3.1 ± 3.1% to 4.2 ± 2.4% (P = 0.032) and significantly decreased total cholesterol from 190 ± 24 mg/dL to 181 ± 25 mg/dL (P = 0.002), glucose from 160 ± 53 mg/dL to 133 ± 25 mg/dL (P < 0.001), HbA1c from 7.5 ± 0.6% to 7.0 ± 0.6% (P < 0.001), urine albumin-to-creatinine ratio from 63.8 ± 134.2 mg/g to 40.9 ± 83.0 mg/g (P = 0.043), and total SDF-1α from 2108 ± 243 pg/mL to 1284 ± 345 pg/mL (P < 0.001). These findings suggest that saxagliptin is effective for improving endothelial function

    CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project

    Get PDF
    Observations of the molecular gas in galaxies are vital to understanding the evolution and star-forming histories of galaxies. However, galaxies with molecular gas maps of their whole discs having sufficient resolution to distinguish galactic structures are severely lacking. Millimeter wavelength studies at a high angular resolution across multiple lines and transitions are particularly needed, severely limiting our ability to infer the universal properties of molecular gas in galaxies. Hence, we conducted a legacy project with the 45 m telescope of the Nobeyama Radio Observatory, called the CO Multi-line Imaging of Nearby Galaxies (COMING), which simultaneously observed 147 galaxies with high far-infrared flux in 12^{12}CO, 13^{13}CO, and C18^{18}O J=10J=1-0 lines. The total molecular gas mass was derived using the standard CO-to-H2_2 conversion factor and found to be positively correlated with the total stellar mass derived from the WISE 3.4μ3.4 \mum band data. The fraction of the total molecular gas mass to the total stellar mass in galaxies does not depend on their Hubble types nor the existence of a galactic bar, although when galaxies in individual morphological types are investigated separately, the fraction seems to decrease with the total stellar mass in early-type galaxies and vice versa in late-type galaxies. No differences in the distribution of the total molecular gas mass, stellar mass, and the total molecular gas to stellar mass ratio was observed between barred and non-barred galaxies, which is likely the result of our sample selection criteria, in that we prioritized observing FIR bright (and thus molecular gas-rich) galaxies.Comment: Accepted for publication in PASJ; 47 pages, 5 tables, 29 figures. On-line supplementary images are available at this URL (https://astro3.sci.hokudai.ac.jp/~radio/coming/publications/). CO data is available at the Japanese Virtual Observatory (JVO) website (https://jvo.nao.ac.jp/portal/nobeyama/coming.do) and the project website (https://astro3.sci.hokudai.ac.jp/~radio/coming/data/

    Na+, K+-ATPase inhibition induces neuronal cell death in rat hippocampal slice cultures: Association with GLAST and glial cell abnormalities

    No full text
    Na+, K+-ATPase is a highly expressed membrane protein. Dysfunction of Na+, K+-ATPase has been implicated in the pathophysiology of several neurodegenerative and psychiatric disorders, however, the underlying mechanism of neuronal cell death resulting from Na+, K+-ATPase dysfunction is poorly understood. Here, we investigated the mechanism of neurotoxicity due to Na+, K+-ATPase inhibition using rat organotypic hippocampal slice cultures. Treatment with ouabain, a Na+, K+-ATPase inhibitor, increased the ratio of propidium iodide-positive cells among NeuN-positive cells in the hippocampal CA1 region, which was prevented by MK-801 and d-AP5, specific blockers of the N-methyl-d-aspartate (NMDA) receptor. EGTA, a Ca2+-chelating agent, also protected neurons from ouabain-induced injury. We observed that astrocytes expressed the glutamate aspartate transporter (GLAST), and ouabain changed the immunoreactive area of GFAP-positive astrocytes as well as GLAST. We also observed that ouabain increased the number of Iba1-positive microglial cells in a time-dependent manner. Furthermore, lithium carbonate, a mood-stabilizing drug, protected hippocampal neurons and reduced disturbances of astrocytes and microglia after ouabain treatment. Notably, lithium carbonate improved ouabain-induced decreases in GLAST intensity in astrocytes. These results suggest that glial cell abnormalities resulting in excessive extracellular concentrations of glutamate contribute to neurotoxicity due to Na+, K+-ATPase dysfunction in the hippocampal CA1 region. Keywords: Glutamate aspartate transporter (GLAST), Hippocampus, Na+, K+-ATPase, Neuronal cell death, N-methyl-d-aspartate (NMDA) recepto

    Validity of the 30-Second Chair-Stand Test to Assess Exercise Tolerance and Clinical Outcomes in Patients with Esophageal Cancer: A Retrospective Study with Reference to 6-Minute Walk Test Results

    Get PDF
    This retrospective study aimed to investigate the validity of a 30-sec chair stand test (CS-30) as a simple test to assess exercise tolerance and clinical outcomes in 53 Japanese patients with esophageal cancer. There was a strong correlation between the results of CS-30 and the 6-min walk test (6MWT), the gold standard for assessing exercise tolerance (r=0.759). Furthermore, fewer patients whose CS-30 score was greater than 16 (the cutoff value defined based on 6MWT) experienced pneumonia in their postoperative course. These results suggest that exercise tolerance could be assessed using CS-30, and its cutoff value may be useful in predicting postoperative pneumonia risk
    corecore