4,024 research outputs found

    Soliton excitation in waveguide arrays with an effective intermediate dimensionality

    Full text link
    We reveal and observe experimentally significant modifications undertaken by discrete solitons in waveguide lattices upon the continuous transformation of the lattice structure from one-dimensional to two-dimensional. Light evolution and soliton excitation in arrays with a gradually increasing number of rows are investigated, yielding solitons with an effective reduced dimensionality residing at the edge and in the bulk of the lattice.Comment: 14 pages, 5 figures, to appear in Physical Review Letter

    ‘Rich’ and ‘poor’ in mentalizing: do expert mentalizers exist?

    Get PDF
    Mentalization theory is concerned with the capacity to notice, and make sense of, thoughts and feelings in self and others. This development may be healthy or impaired and therefore, by extension, it may be theorized that expertise in mentalizing can exist. Furthermore, a continuum from impairment to expertise should exist within separate dimensions of mentalizing: of self and of others. This study hypothesized that three groups would be distinguishable on the basis of their mentalizing capacities. In a cross-sectional design, Psychological Therapists (‘expert’ mentalizers; n = 51), individuals with a diagnosis of Borderline Personality Disorder (‘poor’ mentalizers; n = 43) and members of the general population (‘non-clinical controls’; n = 35) completed a battery of self-report measures. These assessed the mentalizing of self and of others (using an extended version of the Reflective Function Questionnaire (RFQ18)), alexithymia and cognitive empathy. As hypothesized, Psychological Therapists’ scores were higher than controls on self-mentalizing and control group scores were higher than those with BPD. Cognitive empathy scores in the BPD group indicated markedly lower capacities than the other two groups. Contrary to predictions, no significant differences were found between groups on mentalizing others in RFQ18 scores. The Psychological Therapist and BPD profiles were characterized by differential impairment in self and others but in opposing directions. Results suggest that the RFQ18 can identify groups with expertise in mentalizing. Implications of these results for the effectiveness of psychological therapy and of Psychological Therapists are discussed

    High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system

    Get PDF
    We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms. © 2008 Optical Society of America

    Optics in Curved Space

    Get PDF
    We experimentally study the impact of intrinsic and extrinsic curvature of space on the evolution of light. We show that the topology of a surface matters for radii of curvature comparable with the wavelength, whereas for macroscopically curved surfaces only intrinsic curvature is relevant. On a surface with constant positive Gaussian curvature we observe periodic refocusing, self-imaging, and diffractionless propagation. In contrast, light spreads exponentially on surfaces with constant negative Gaussian curvature. For the first time we realized two beam interference in negatively curved space

    Two-dimensional solitons at interfaces between binary superlattices and homogeneous lattices

    Full text link
    We report on the experimental observation of two-dimensional surface solitons residing at the interface between a homogeneous square lattice and a superlattice that consists of alternating "deep" and "shallow" waveguides. By exciting single waveguides in the first row of the superlattice, we show that solitons centered on deep sites require much lower powers than their respective counterparts centered on shallow sites. Despite the fact that the average refractive index of the superlattice waveguides is equal to the refractive index of the homogeneous lattice, the interface results in clearly asymmetric output patterns.Comment: 16 pages, 5 figures, to appear in Physical Review

    Using reciprocity for relating the simulation of transcranial current stimulation to the EEG forward problem

    Get PDF
    To explore the relationship between transcranial current stimulation (tCS) and the electroencephalography (EEG) forward problem, we investigate and compare accuracy and efficiency of a reciprocal and a direct EEG forward approach for dipolar primary current sources both based on the finite element method (FEM), namely the adjoint approach (AA) and the partial integration approach in conjunction with a transfer matrix concept (PI). By analyzing numerical results, comparing to analytically derived EEG forward potentials and estimating computational complexity in spherical shell models, AA turns out to be essentially identical to PI. It is then proven that AA and PI are also algebraically identical even for general head models. This relation offers a direct link between the EEG forward problem and tCS. We then demonstrate how the quasi-analytical EEG forward solutions in sphere models can be used to validate the numerical accuracies of FEM-based tCS simulation approaches. These approaches differ with respect to the ease with which they can be employed for realistic head modeling based on MRI-derived segmentations. We show that while the accuracy of the most easy to realize approach based on regular hexahedral elements is already quite high, it can be significantly improved if a geometry-adaptation of the elements is employed in conjunction with an isoparametric FEM approach. While the latter approach does not involve any additional difficulties for the user, it reaches the high accuracies of surface-segmentation based tetrahedral FEM, which is considerably more difficult to implement and topologically less flexible in practice. Finally, in a highly realistic head volume conductor model and when compared to the regular alternative, the geometry-adapted hexahedral FEM is shown to result in significant changes in tCS current flow orientation and magnitude up to 45° and a factor of 1.66, respectively

    Observation of two-dimensional lattice interface solitons

    Full text link
    We report on the experimental observation of two-dimensional solitons at the interface between square and hexagonal waveguide arrays. In addition to the different symmetry of the lattices, the influence of a varying refractive index modulation depth is investigated. Such variation strongly affects the properties of surface solitons residing at different sides of the interface.Comment: 14 pages, 5 figures, to appear in Optics Letter
    corecore