57 research outputs found

    Muography applied to nuclear waste storage sites

    Get PDF
    Legacy storage sites for nuclear waste can pose a serious environmental problem. In fact, since certain sites date from the middle of the last century when safety protocols had not been properly established and strict bookkeeping was not enforced, a situation has evolved where the content of storage silos is basically known only with a large uncertainty both on quantity and quality. At the same time maintenance work on old storage structures is becoming ever more urgent and yet this work requires exactly that information which is now lacking on the type of waste that was stored inside. Because of the difficulty in accessing the storage silos and the near impossibility of making visual inspections inside, techniques have to be developed which can determine the presence or absence of heavy elements (i.e. uranium) within the structures. Muography is a very promising technique which could allow the survey of previously inaccessible structures. We have begun an evaluation performing feasibility studies using simulations based on real case scenarios. This paper will outline the storage site scenarios and then present some of the results obtained from the Monte Carlo simulations

    a possible point of contact between cosmic ray physics and archaeology muon absorption radiography at the tharros phoenician roman site

    Get PDF
    Several on-going activities exploiting the potential of the muon-absorption radiography technique are focusing on the study of large volcanic structures located in different geographical regions. Nonetheless, the possible application of this non-destructive surveying method to other fields is also under consideration by different groups. Looking backward to the history of muon radiography, we can learn how the first important success of this technique was achieved in the archaeological field by the physicist Luis W. Alvarez in the 1960s. Further examples of possible applications can be found concerning geological and mining applications. In this paper a possible application of muon absorption radiography in the context of the archaeological research is proposed. Results of a simulation of a simplified case study are presented

    a geant4 framework for generic simulations of atmospheric muon detection experiments

    Get PDF
    A flexible and adaptive simulation framework based on Geant4 is presented. The framework has been developed in order to speed up the deployment of full-featured Monte Carlo simulation codes for small/medium sized particle detection experiments with generic geometries. Specific components related to atmospheric muon experiments have been developed and are presented as well

    The MURAVES telescope front-end electronics and data acquisition

    Get PDF
    The MURAVES detector is a 4 m 2 muon tracker equipped with a low power consumption electronic and designed to work in volcanic areas. Due to the great amount of channels (~1500) the detector is equipped with a multilayer electronic for data acquisition. It consists of 12 slave boards and 1 master board per square meter of detector and a single Raspberry Pi board that rules the whole set of one-square-meter detectors. Because of this modularity, we can enlarge in principle the detector surface by adding more one-square-meter elements. In the present work, we resume the main features of the MURAVES detector designed for the muography of volcanoes and, more generally, for the imaging of the underground. We focus on the capability to fine tune every single channel of the detector and the precise measure of the time of flight of the muons. The latter uses a time expansion technique and it should allow us to make a background rejection never obtained until now

    The MURAVES muon telescope: technology and expected performances

    Get PDF
    The MURAVES project aims to study the inner structure of the upper part of the Mt. Vesuvius volcano by muon radiography (muography) technique. Very high energy muons, produced by cosmic rays in the at- mosphere, can penetrate large thickness of rocks. By measuring the at- tenuation of the muons flux trough the volcano cone is possible to obtain a 2D image of the density structure. Internal discontinuities, with a spa- tial resolution of about 10 m, can be, in principle, resolved. An absolute average density measurement can be provided too. The project, funded by the Italian Ministry of University, Research and Education (MIUR), is led by INGV and INFN. In this article the mechanical structure of the de- tectors and background suppression techniques are reported
    corecore