83 research outputs found

    Hepatic autophagy contributes to the metabolic response to dietary protein restriction

    Get PDF
    © 2016 Elsevier Inc. All rights reserved. Autophagy is an essential cellular response which acts to release stored cellular substrates during nutrient restriction, and particularly plays a key role in the cellular response to amino acid restriction. However, there has been limited work testing whether the induction of autophagy is required for adaptive metabolic responses to dietary protein restriction in the whole animal. Here, we found that moderate dietary protein restriction led to a series of metabolic changes in rats, including increases in food intake and energy expenditure, the downregulation of hepatic fatty acid synthesis gene expression and reduced markers of hepatic mitochondrial number. Importantly, these effects were also associated with an induction of hepatic autophagy. To determine if the induction of autophagy contributes to these metabolic effects, we tested the metabolic response to dietary protein restriction in BCL2-AAA mice, which bear a genetic mutation that impairs autophagy induction. Interestingly, BCL2-AAA mice exhibit exaggerated responses in terms of both food intake and energy expenditure, whereas the effects of protein restriction on hepatic metabolism were significantly blunted. These data demonstrate that restriction of dietary protein is sufficient to trigger hepatic autophagy, and that disruption of autophagy significantly alters both hepatic and whole animal metabolic response to dietary protein restriction

    Oral Corticosterone Administration Reduces Insulitis but Promotes Insulin Resistance and Hyperglycemia in Male Nonobese Diabetic Mice

    Get PDF
    © 2017 American Society for Investigative Pathology Steroid-induced diabetes is the most common form of drug-induced hyperglycemia. Therefore, metabolic and immunological alterations associated with chronic oral corticosterone were investigated using male nonobese diabetic mice. Three weeks after corticosterone delivery, there was reduced sensitivity to insulin action measured by insulin tolerance test. Body composition measurements revealed increased fat mass and decreased lean mass. Overt hyperglycemia (\u3e250 mg/dL) manifested 6 weeks after the start of glucocorticoid administration, whereas 100% of the mice receiving the vehicle control remained normoglycemic. This phenotype was fully reversed during the washout phase and readily reproducible across institutions. Relative to the vehicle control group, mice receiving corticosterone had a significant enhancement in pancreatic insulin-positive area, but a marked decrease in CD3+ cell infiltration. In addition, there were striking increases in both citrate synthase gene expression and enzymatic activity in skeletal muscle of mice in the corticosterone group relative to vehicle control. Moreover, glycogen synthase expression was greatly enhanced, consistent with elevations in muscle glycogen storage in mice receiving corticosterone. Corticosterone-induced hyperglycemia, insulin resistance, and changes in muscle gene expression were all reversed by the end of the washout phase, indicating that the metabolic alterations were not permanent. Thus, male nonobese diabetic mice allow for translational studies on the metabolic and immunological consequences of glucocorticoid-associated interventions in a mouse model with genetic susceptibility to autoimmune disease

    Db / db Mice Exhibit Features of Human Type 2 Diabetes That Are Not Present in Weight-Matched C57BL/6J Mice Fed a Western Diet

    Get PDF
    © 2017 Susan J. Burke et al. To understand features of human obesity and type 2 diabetes mellitus (T2D) that can be recapitulated in the mouse, we compared C57BL/6J mice fed a Western-style diet (WD) to weight-matched genetically obese leptin receptor-deficient mice (db/db). All mice were monitored for changes in body composition, glycemia, and total body mass. To objectively compare diet-induced and genetic models of obesity, tissue analyses were conducted using mice with similar body mass. We found that adipose tissue inflammation was present in both models of obesity. In addition, distinct alterations in metabolic flexibility were evident between WD-fed mice and db/db mice. Circulating insulin levels are elevated in each model of obesity, while glucagon was increased only in the db/db mice. Although both WD-fed and db/db mice exhibited adaptive increases in islet size, the db/db mice also displayed augmented islet expression of the dedifferentiation marker Aldh1a3 and reduced nuclear presence of the transcription factor Nkx6.1. Based on the collective results put forth herein, we conclude that db/db mice capture key features of human T2D that do not occur in WD-fed C57BL/6J mice of comparable body mass

    Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance

    Get PDF
    SummaryPrevious studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive β-oxidation, impaired switching to carbohydrate substrate during the fasted-to-fed transition, and coincident depletion of organic acid intermediates of the tricarboxylic acid cycle. In cultured myotubes, lipid-induced insulin resistance was prevented by manipulations that restrict fatty acid uptake into mitochondria. These results were recapitulated in mice lacking malonyl-CoA decarboxylase (MCD), an enzyme that promotes mitochondrial β-oxidation by relieving malonyl-CoA-mediated inhibition of carnitine palmitoyltransferase 1. Thus, mcd−/− mice exhibit reduced rates of fat catabolism and resist diet-induced glucose intolerance despite high intramuscular levels of long-chain acyl-CoAs. These findings reveal a strong connection between skeletal muscle insulin resistance and lipid-induced mitochondrial stress

    Liquid Sucrose Consumption Promotes Obesity and Impairs Glucose Tolerance Without Altering Circulating Insulin Levels

    Get PDF
    © 2018 The Obesity Society Objective: Multiple factors contribute to the rising rates of obesity and to difficulties in weight reduction that exist in the worldwide population. Caloric intake via sugar-sweetened beverages may be influential. This study tested the hypothesis that liquid sucrose intake promotes obesity by increasing serum insulin levels and tissue lipid accumulation. Methods: C57BL/6J mice were given 30% sucrose in liquid form. Changes in weight gain, body composition, energy expenditure (EE), and tissue lipid content were measured. Results: Mice drinking sucrose gained more total body mass (TBM), had greater fat mass, and displayed impaired glucose tolerance relative to control mice. These metabolic changes occurred without alterations in circulating insulin levels and despite increases in whole body EE. Lipid accrued in liver, but not skeletal muscle, of sucrose-consuming mice. Oxygen consumption (VO2) correlated with fat-free mass and moderately with TBM, but not with fat mass. ANCOVA for treatment effects on EE, with TBM, VO2, lean body mass, and fat-free mass taken as potential covariates for EE, revealed VO2 as the most significant correlation. Conclusions: Weight gain induced by intake of liquid sucrose in mice is associated with lipid accrual in liver, but not skeletal muscle, and occurs without an increase in circulating insulin

    Proximal tubular cell–specific ablation of carnitine acetyltransferase causes tubular disease and secondary glomerulosclerosis

    Get PDF
    © 2019 by the American Diabetes Association. Proximal tubular epithelial cells are highly energy demanding. Their energy need is covered mostly from mitochondrial fatty acid oxidation. Whether derailments in fatty acid metabolism and mitochondrial dysfunction are forerunners of tubular damage has been suggested but is not entirely clear. Here we modeled mitochondrial overload by creating mice lacking the enzyme carnitine acetyltransferase (CrAT) in the proximal tubules, thus limiting a primary mechanism to export carbons under conditions of substrate excess. Mice developed tubular disease and, interestingly, secondary glomerulosclerosis. This was accompanied by increased levels of apoptosis regulator and fibrosis markers, increased oxidative stress, and abnormal profiles of acylcarnitines and organic acids suggesting profound impairments in all major forms of nutrient metabolism. When mice with CrAT deletion were fed a high-fat diet, kidney disease was more severe and developed faster. Primary proximal tubular cells isolated from the knockout mice displayed energy deficit and impaired respiration before the onset of pathology, suggesting mitochondrial respiratory abnormalities as a potential underlying mechanism. Our findings support the hypothesis that derailments of mitochondrial energy metabolism may be causative to chronic kidney disease. Our results also suggest that tubular injury may be a primary event followed by secondary glomerulosclerosis, raising the possibility that focusing on normalizing tubular cell mitochondrial function and energy balance could be an important preventative strategy

    Thiobenzothiazole-modified hydrocortisones display anti-inflammatory activity with reduced impact on islet β-cell function

    Get PDF
    © 2015, American Society for Biochemistry and Molecular Biology Inc. All rights reserved. Glucocorticoids signal through the glucocorticoid receptor (GR) and are administered clinically for a variety of situations, including inflammatory disorders, specific cancers, rheumatoid arthritis, and organ/tissue transplantation. However, glucocorticoid therapy is also associated with additional complications, including steroid-induced diabetes. We hypothesized that modification of the steroid backbone is one strategy to enhance the therapeutic potential of GR activation. Toward this goal, two commercially unavailable, thiobenzothiazole-containing derivatives of hydrocortisone (termed MS4 and MS6) were examined using 832/13 rat insulinoma cells as well as rodent and human islets. We found that MS4 had transrepression properties but lacked transactivation ability, whereas MS6 retained both transactivation and transrepression activities. In addition, MS4 and MS6 both displayed anti-inflammatory activity. Furthermore, MS4 displayed reduced impact on islet β-cell function in both rodent and human islets. Similar to dexamethasone, MS6 promoted adipocyte development in vitro, whereas MS4 did not. Moreover, neither MS4 nor MS6 activated the Pck1 (Pepck) gene in primary rat hepatocytes. We conclude that modification of the functional groups attached to the D-ring of the hydrocortisone steroid molecule produces compounds with altered structure-function GR agonist activity with decreased impact on insulin secretion and reduced adipogenic potential but with preservation of anti-inflammatory activity

    Precision exercise medicine: understanding exercise response variability

    Get PDF
    There is evidence from human twin and family studies as well as mouse and rat selection experiments that there are considerable interindividual differences in the response of cardiorespiratory fitness (CRF) and other cardiometabolic traits to a given exercise programme dose. We developed this consensus statement on exercise response variability following a symposium dedicated to this topic. There is strong evidence from both animal and human studies that exercise training doses lead to variable responses. A genetic component contributes to exercise training response variability. In this consensus statement, we (1) briefly review the literature on exercise response variability and the various sources of variations in CRF response to an exercise programme, (2) introduce the key research designs and corresponding statistical models with an emphasis on randomised controlled designs with or without multiple pretests and post-tests, crossover designs and repeated measures designs, (3) discuss advantages and disadvantages of multiple methods of categorising exercise response levels-a topic that is of particular interest for personalised exercise medicine and (4) outline approaches that may identify determinants and modifiers of CRF exercise response. We also summarise gaps in knowledge and recommend future research to better understand exercise response variability531811411153The consensus meeting that led to the writing of this manuscript was held with the financial support of the Pennington Biomedical Research Foundation, the Pennington Biomedical Research Center Division of Education, the LSU Boyd Professorship and the John W. Barton, Sr. Chair in Genetics and Nutrition. No funding and/or honorarium was provided to any member of the writing group for the production of this manuscrip

    Impaired Mitochondrial Fat Oxidation Induces FGF21 in Muscle

    Get PDF
    SummaryFatty acids are the primary fuel source for skeletal muscle during most of our daily activities, and impaired fatty acid oxidation (FAO) is associated with insulin resistance. We have developed a mouse model of impaired FAO by deleting carnitine palmitoyltransferase-1b specifically in skeletal muscle (Cpt1bm−/−). Cpt1bm−/− mice have increased glucose utilization and are resistant to diet-induced obesity. Here, we show that inhibition of mitochondrial FAO induces FGF21 expression specifically in skeletal muscle. The induction of FGF21 in Cpt1b-deficient muscle is dependent on AMPK and Akt1 signaling but independent of the stress signaling pathways. FGF21 appears to act in a paracrine manner to increase glucose uptake under low insulin conditions, but it does not contribute to the resistance to diet-induced obesity

    Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism

    Get PDF
    © 2015, National Academy of Sciences. All rights reserved. The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity
    • …
    corecore