78 research outputs found

    Gravitational collapse of a Hagedorn fluid in Vaidya geometry

    Get PDF
    The gravitational collapse of a high-density null charged matter fluid, satisfying the Hagedorn equation of state, is considered in the framework of the Vaidya geometry. The general solution of the gravitational field equations can be obtained in an exact parametric form. The conditions for the formation of a naked singularity, as a result of the collapse of the compact object, are also investigated. For an appropriate choice of the arbitrary integration functions the null radial outgoing geodesic, originating from the shell focussing central singularity, admits one or more positive roots. Hence a collapsing Hagedorn fluid could end either as a black hole, or as a naked singularity. A possible astrophysical application of the model, to describe the energy source of gamma-ray bursts, is also considered.Comment: 14 pages, 2 figures, to appear in Phys. Rev.

    Molecular Features of Cancers Exhibiting Exceptional Responses to Treatment

    Get PDF
    A small fraction of cancer patients with advanced disease survive significantly longer than patients with clinically comparable tumors. Molecular mechanisms for exceptional responses to therapy have been identified by genomic analysis of tumor biopsies from individual patients. Here, we analyzed tumor biopsies from an unbiased cohort of 111 exceptional responder patients using multiple platforms to profile genetic and epigenetic aberrations as well as the tumor microenvironment. Integrative analysis uncovered plausible mechanisms for the therapeutic response in nearly a quarter of the patients. The mechanisms were assigned to four broad categories—DNA damage response, intracellular signaling, immune engagement, and genetic alterations characteristic of favorable prognosis—with many tumors falling into multiple categories. These analyses revealed synthetic lethal relationships that may be exploited therapeutically and rare genetic lesions that favor therapeutic success, while also providing a wealth of testable hypotheses regarding oncogenic mechanisms that may influence the response to cancer therapy. Profiling multi-platform genomics of 110 cancer patients with an exceptional therapeutic response, Wheeler et al. identify putative molecular mechanisms explaining this survival phenotype in ∼23% of cases. Therapeutic success is related to rare molecular features of responding tumors, exploiting synthetic lethality and oncogene addiction

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Coordinated group response to nest intruders in social shrimp

    No full text
    A key characteristic of highly social animals is collective group response to important stimuli such as invasion by enemies. The marine societies of social snapping shrimp share many convergences with terrestrial eusocial animals, including aggressive reaction to strangers, but no group actions have yet been observed in shrimp. Here we describe ‘coordinated snapping’, during which a sentinel shrimp reacts to danger by recruiting other colony members to snap in concert for several to tens of seconds. This distinctive behaviour is a specific response to intrusion by strange shrimp into the colony's sponge and is highly successful at repelling these intruders. Although coordinated snapping apparently functions analogously to alarm responses in other social animals, colony members in social shrimp do not rush to the site of the attack. Coordinated snapping appears instead to be a warning signal to would-be intruders that the sponge is occupied by a cooperative colony ready to defend it. This is the first evidence for coordinated communication in social shrimp and represents yet another remarkable convergence between social shrimp, insects and vertebrates

    Clinicopathological and molecular significance of Sumolyation marker (ubiquitin conjugating enzyme 9 (UBC9)) expression in breast cancer of black women

    No full text
    The majority of breast cancers (BC) in Nigerian women are triple negative and show breast cancer-associated gene 1 (BRCA1) deficiency as well as the basal like phenotype, with a high mortality rate. In contrast to the well-defined predictive factors for the hormonal therapy, there is a paucity of information on the BRCA1 deficiency breast tumor biology, particularly among African women. BRCA1 Sumoylation (UBC9) has been speculated to be involved in the ER transcription activity, BRCA1 deficiency and triple negative BC. We therefore hypothesized that UBC9, a SUMOylation marker, may have contributed to the aggressive nature of BRCA1 tumor phenotype observed in Nigerian women.This study investigated the immunoprofiles of UBC9 in tissue microarray (TMA) of 199 Nigerian women and correlated their protein expression with clinical outcome, pathological responses and the expression of other biomarkers to demonstrate the functional significance in Nigerian women.The protein expression of UBC9, as compared with other biomarkers, showed an inverse correlation with steroid hormones (ER, progesterone (PgR)), BRCA1, p27, p21 and MDM4, and a positive correlation with triple negative, basal cytokeratins (CK14 and CK5/6), epidermal growth factor receptor (EGFR), basal-like breast cancer phenotype, p53, phosphoinositide-3-kinases (PI3KCA), placental cadherin, (P-cadherin) and BRCA1 regulators (metastasis tumor antigen-1 (MTA1). Survival analysis showed that those tumors positive for UBC9 expression had a significantly poorer breast cancer-specific survival (BCSS) as compared with those showing negative expression. UBC9 remained an independent predictor of outcome for BCSS.This study demonstrates that UBC9 appears to play an important role in the tumor biology of Nigerian women. Therefore, a novel UBC9 targeted therapy in black women with BC could enhance a better patient outcome
    corecore