843 research outputs found

    Why is it difficult to implement e-health initiatives? A qualitative study

    Get PDF
    <b>Background</b> The use of information and communication technologies in healthcare is seen as essential for high quality and cost-effective healthcare. However, implementation of e-health initiatives has often been problematic, with many failing to demonstrate predicted benefits. This study aimed to explore and understand the experiences of implementers - the senior managers and other staff charged with implementing e-health initiatives and their assessment of factors which promote or inhibit the successful implementation, embedding, and integration of e-health initiatives.<p></p> <b>Methods</b> We used a case study methodology, using semi-structured interviews with implementers for data collection. Case studies were selected to provide a range of healthcare contexts (primary, secondary, community care), e-health initiatives, and degrees of normalization. The initiatives studied were Picture Archiving and Communication System (PACS) in secondary care, a Community Nurse Information System (CNIS) in community care, and Choose and Book (C&B) across the primary-secondary care interface. Implementers were selected to provide a range of seniority, including chief executive officers, middle managers, and staff with 'on the ground' experience. Interview data were analyzed using a framework derived from Normalization Process Theory (NPT).<p></p> <b>Results</b> Twenty-three interviews were completed across the three case studies. There were wide differences in experiences of implementation and embedding across these case studies; these differences were well explained by collective action components of NPT. New technology was most likely to 'normalize' where implementers perceived that it had a positive impact on interactions between professionals and patients and between different professional groups, and fit well with the organisational goals and skill sets of existing staff. However, where implementers perceived problems in one or more of these areas, they also perceived a lower level of normalization.<p></p> <b>Conclusions</b> Implementers had rich understandings of barriers and facilitators to successful implementation of e-health initiatives, and their views should continue to be sought in future research. NPT can be used to explain observed variations in implementation processes, and may be useful in drawing planners' attention to potential problems with a view to addressing them during implementation planning

    The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition

    Get PDF
    The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT.Oncogene advance online publication, 25 July 2016; doi:10.1038/onc.2016.260

    Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei

    Get PDF
    The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively

    Identification and Characterization of an Unusual Class I Myosin Involved in Vesicle Traffic in Trypanosoma brucei

    Get PDF
    Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of ∼90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites

    A nearly continuous measure of birth weight for gestational age using a United States national reference

    Get PDF
    BACKGROUND: Fully understanding the determinants and sequelae of fetal growth requires a continuous measure of birth weight adjusted for gestational age. Published United States reference data, however, provide estimates only of the median and lowest and highest 5(th )and 10(th )percentiles for birth weight at each gestational age. The purpose of our analysis was to create more continuous reference measures of birth weight for gestational age for use in epidemiologic analyses. METHODS: We used data from the most recent nationwide United States Natality datasets to generate multiple reference percentiles of birth weight at each completed week of gestation from 22 through 44 weeks. Gestational age was determined from last menstrual period. We analyzed data from 6,690,717 singleton infants with recorded birth weight and sex born to United States resident mothers in 1999 and 2000. RESULTS: Birth weight rose with greater gestational age, with increasing slopes during the third trimester and a leveling off beyond 40 weeks. Boys had higher birth weights than girls, later born children higher weights than firstborns, and infants born to non-Hispanic white mothers higher birth weights than those born to non-Hispanic black mothers. These results correspond well with previously published estimates reporting limited percentiles. CONCLUSIONS: Our method provides comprehensive reference values of birth weight at 22 through 44 completed weeks of gestation, derived from broadly based nationwide data. Other approaches require assumptions of normality or of a functional relationship between gestational age and birth weight, which may not be appropriate. These data should prove useful for researchers investigating the predictors and outcomes of altered fetal growth

    Loss of Frrs1l disrupts synaptic AMPA receptor function, and results in neurodevelopmental, motor, cognitive and electrographical abnormalities

    Get PDF
    Loss of function mutations in the human AMPA receptor-associated protein, ferric chelate reductase 1-like (FRRS1L), are associated with a devastating neurological condition incorporating choreoathetosis, cognitive deficits and epileptic encephalopathies. Furthermore, evidence from overexpression and ex vivo studies have implicated FRRS1L in AMPA receptor biogenesis, suggesting that changes in glutamatergic signalling might underlie the disorder. Here, we investigated the neurological and neurobehavioural correlates of the disorder using a mouse Frrs1l null mutant. The study revealed several neurological defects that mirrored those seen in human patients. We established that mice lacking Frrs1l suffered from a broad spectrum of early-onset motor deficits with no progressive, age-related deterioration. Moreover, Frrs1l -/- mice were hyperactive irrespective of test environment, exhibited working memory deficits and displayed significant sleep fragmentation. Longitudinal electroencephalographic recordings also revealed abnormal EEG in Frrs1l -/- mice. Parallel investigations into disease aetiology identified a specific deficiency in AMPA receptor levels in the brain of Frrs1l -/- mice, while the general levels of several other synaptic components remained unchanged with no obvious alterations in the number of synapses. Furthermore, we established that Frrsl1 deletion results in an increased proportion of immature AMPA receptors, indicated by incomplete glycosylation of GLUA2 and GLUA4 AMPA receptor proteins. This incomplete maturation leads to cytoplasmic retention and a reduction of those specific AMPA receptor levels in the postsynaptic membrane. Overall, this study determines, for the first time in vivo, how loss of FRRS1L function can affect glutamatergic signalling and provides mechanistic insight into the development and progression of a human hyperkinetic disorder
    corecore