526 research outputs found

    Diagnostic approach to unilateral hyperlucent lung

    Get PDF

    Kinetic roughening of ion-sputtered Pd(001) surface: Beyond the Kuramoto-Sivashinsky model

    Get PDF
    The kinetic roughening of Ar+ ion-sputtered Pd(001) surface was investigated. The facet formation on the sputtered surface was studied by tracing the extradiffraction peaks or satellites around the diffraction peaks corresponding to the sample surface. The morphological evolution of the sputtered Pd(001) surface was also investigated by an scanning tunneling microscopy (STM). It was shown that the nanoscale adatom islands form and grow with increasing sputter time.open313

    Influence of ambient water intrusion on coral reef acidification in the Chuuk lagoon, located in the coral-rich western Pacific Ocean

    Get PDF
    Weekly carbonate chemistry condition data recorded between 2008 and 2014 in the Chuuk lagoon (7.3 degrees N and 151.5 degrees E) of the Federated States of Micronesia, located in the western Pacific Ocean, were analyzed. The results showed that, during periods of weak intrusion of ambient seawater from the surrounding open ocean, two internal biological processes (calcification and respiration) reinforced each other and together lowered the pH of the reef water for extended periods, ranging from a few to several months. The analysis indicated that reduced intrusion of ambient water is associated with periods of low wind speeds. Such conditions increase the residence time of reef water, thus promoting acidification by respiration and calcification. This phenomenon likely affects many other areas of the coral-rich western Pacific Ocean, which contains 50% of global coral reefs and in which the degree of ambient water intrusion into the atolls has been shown to be closely associated with the El Nino-Southern Oscillation-induced wind speed change.1111Ysciescopu

    Identification of Genetic Diversity among Mutant Taro (Colocasia esculenta L. cv WANGI) Using Agro-Morphological Trait and Simple Sequence Repeats (SSR) Molecular Markers

    Get PDF
    Taro (Colocasia esculenta) is one of the traditional crops with enormous sources of dietary fiber, carbohydrates, vitamins, and minerals contents. Mutation breeding using gamma radiation is one of the most preferred approaches used to induce mutation in taro studies. Molecular markers are widely used to detect such induced mutation and genetic diversity in plants. Therefore, the present study was carried out to evaluate genetic diversity among irradiated taro genotypes in comparison with standard taro variety by using simple sequence repeats (SSR). A total of 200 of M1V4 taro genotypes were used in this study derived from segregating population of chronic-gamma irradiated taro cv Wangi with different ranges of gamma dose. The agro-morphological results revealed that genotype exposure in T6 (120.12 Gy) has the highest plant height (54.53 cm), leaf length (32.24 cm), and leaf width (24.87 cm). Corm's weight was decreased significantly with an increased dose of treatment. All mutants recorded a lower number of corm weight as compared with the control genotype. Out of 10 SSR primers tested, 9 primers have successfully amplified 43 amplicons. The polymorphism information content (PIC) values of SSR markers ranged from 0.20 to 0.80. Cluster analysis classified taro into 3 subgroups mutant and parent genotypes. The results clearly showed that SSR markers are important tools to distinguish mutant genotypes and confirmed their usefulness for phylogenetic studies. Finally, the present investigation indicated that genotypes exposed by T6 (120.12 Gy) are promising high-yielding genotypes that can be recommended as new cultivars and possessed an attractive phenotype appropriate for ornamental use

    Direct Observation of Localized Spin Antiferromagnetic Transition in PdCrO2 by Angle-Resolved Photoemission Spectroscopy

    Get PDF
    We report the first case of the successful measurements of a localized spin antiferromagnetic transition in delafossite-type PdCrO2 by angle-resolved photoemission spectroscopy (ARPES). This demonstrates how to circumvent the shortcomings of ARPES for investigation of magnetism involved with localized spins in limited size of two-dimensional crystals or multi-layer thin films that neutron scattering can hardly study due to lack of bulk compared to surface. Also, our observations give direct evidence for the spin ordering pattern of Cr3+ ions in PdCrO2 suggested by neutron diffraction and quantum oscillation measurements, and provide a strong constraint that has to be satisfied by a microscopic mechanism for the unconventional anomalous Hall effect recently reported in this system.X1118sciescopu

    Controlling the evolution of two-dimensional electron gas states at a metal/Bi2Se3 interface

    Get PDF
    We demonstrate that the evolution of a two-dimensional electron gas system at an interface of a metal and the model topological insulator (TI) Bi2Se3 can be controlled by choosing an appropriate kind of metal element and by applying a low temperature evaporation procedure. In particular, we find that only topological surface states (TSSs) can exist at a Mn/Bi2Se3 interface, which would be useful for implementing a TI-based device with surface current channels only. The existence of TSSs alone at the interface is confirmed by angle-resolved photoemission spectroscopy (ARPES). Based on the ARPES and core-level x-ray photoemission spectroscopy measurements, we propose a cation intercalation model to explain our findings.open1156sciescopu

    Emergent quantum confinement at topological insulator surfaces

    Full text link
    Bismuth-chalchogenides are model examples of three-dimensional topological insulators. Their ideal bulk-truncated surface hosts a single spin-helical surface state, which is the simplest possible surface electronic structure allowed by their non-trivial Z2\mathbb{Z}_2 topology. They are therefore widely regarded ideal templates to realize the predicted exotic phenomena and applications of this topological surface state. However, real surfaces of such compounds, even if kept in ultra-high vacuum, rapidly develop a much more complex electronic structure whose origin and properties have proved controversial. Here, we demonstrate that a conceptually simple model, implementing a semiconductor-like band bending in a parameter-free tight-binding supercell calculation, can quantitatively explain the entire measured hierarchy of electronic states. In combination with circular dichroism in angle-resolved photoemission (ARPES) experiments, we further uncover a rich three-dimensional spin texture of this surface electronic system, resulting from the non-trivial topology of the bulk band structure. Moreover, our study reveals how the full surface-bulk connectivity in topological insulators is modified by quantum confinement.Comment: 9 pages, including supplementary information, 4+4 figures. A high resolution version is available at http://www.st-andrews.ac.uk/~pdk6/pub_files/TI_quant_conf_high_res.pd

    Interactions among mitochondrial proteins altered in glioblastoma

    Get PDF
    Mitochondrial dysfunction is putatively central to glioblastoma (GBM) pathophysiology but there has been no systematic analysis in GBM of the proteins which are integral to mitochondrial function. Alterations in proteins in mitochondrial enriched fractions from patients with GBM were defined with label-free liquid chromatography mass spectrometry. 256 mitochondrially-associated proteins were identified in mitochondrial enriched fractions and 117 of these mitochondrial proteins were markedly (fold-change ≥2) and significantly altered in GBM (p ≤ 0.05). Proteins associated with oxidative damage (including catalase, superoxide dismutase 2, peroxiredoxin 1 and peroxiredoxin 4) were increased in GBM. Protein–protein interaction analysis highlighted a reduction in multiple proteins coupled to energy metabolism (in particular respiratory chain proteins, including 23 complex-I proteins). Qualitative ultrastructural analysis in GBM with electron microscopy showed a notably higher prevalence of mitochondria with cristolysis in GBM. This study highlights the complex mitochondrial proteomic adjustments which occur in GBM pathophysiology

    Apolipophorin-III Mediates Antiplasmodial Epithelial Responses in Anopheles gambiae (G3) Mosquitoes

    Get PDF
    Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes.We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold.There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection
    corecore