23 research outputs found

    On the Sorbent Ability and Reusability of Graphene-Oxide– Chitosan Aerogels for the Removal of Dyes from Wastewater

    Get PDF
    One of the most persistent issues affecting people worldwide is water contamination due to the indiscriminate disposal of pollutants, causing severe environmental problems. Dyes are among the most harmful contaminants because of their high chemical stability and consequently difficult degradation. To remove contaminants from water, adsorption is the most widely used and effective method. In this work, we recall the results already published about the synthesis, the characterization and the use of porous graphene-oxide–chitosan aerogels as a sorbent material. Those systems, prepared by mixing GO sheets and CS chains, using APS as a cross-linking agent, and by further lyophilization, were further characterized using nano-computed tomography, supplying more understanding about their micro and nano-structure. Their sorbent ability has been investigated also by the study of their isotherm of adsorption of two different anionic dyes: Indigo Carmine and Cibacron Brilliant Yellow. Those analyses confirmed the potentialities of the aerogels and their affinity for those anionic dyes. Moreover, the possibility of regenerating and reusing the material was evaluated as a key aspect for applications of this kind. The treatment with NaOH, to promote the desorption of adsorbed dyes, and subsequent washing with HCl, to re-protonate the system, ensured the regeneration of the gels and their use in multiple cycles of adsorption with the selected water contaminants

    Impact of Drug Load and Polymer Molecular Weight on the 3D Microstructure of Printed Tablets

    Get PDF
    This study investigates the influence of drug load and polymer molecular weight on the structure of tablets three-dimensionally (3D) printed from the binary mixture of prednisolone and hydroxypropyl methylcellulose (HPMC). Three different HPMC grades, (AFFINISOLTM HPMC HME 15LV, 90 Da (HPMC 15LV); 100LV, 180 Da (HPMC 100LV); 4M, 500 Da (HPMC 4M)), which are suitable for hot-melt extrusion (HME), were used in this study. HME was used to fabricate feedstock material, i.e., filaments, at the lowest possible extrusion temperature. Filaments of the three HPMC grades were prepared to contain 2.5, 5, 10 and 20 % (w/w) prednisolone. The thermal degradation of the filaments was studied with thermogravimetric analysis, while solid-state properties of the drug-loaded filaments were assessed with the use of X-ray powder diffraction. Prednisolone in the freshly extruded filaments was determined to be amorphous for drug loads up to 10%. It remained physically stable for at least 6 months of storage, except for the filament containing 10% drug with HPMC 15LV, where recrystallization of prednisolone was detected. Fused deposition modeling was utilized to print honeycomb-shaped tablets from the HME filaments of HPMC 15LV and 100LV. The structural characteristics of the tablets were evaluated using X-ray microcomputed tomography, specifically porosity and size of structural elements were investigated. The tablets printed from HPMC 15LV possessed in general lower total porosity and pores of smaller size than tablets printed from the HPMC 100LV. The studied drug loads were shown to have minor effect on the total porosity of the tablets, though the lower the drug load was, the higher the variance of porosity along the height of the tablet was observed. It was found that tablets printed with HPMC 15LV showed higher structural similarity with the virtually designed model than tablets printed from HPMC 100LV. These findings highlight the relevance of the drug load and polymer molecular weight on the microstructure and structural properties of 3D printed tablets

    Nano-CT as tool for characterization of dental resin composites

    Get PDF
    Technological advances have made it possible to examine dental resin composites using 3D nanometer resolution. This investigation aims to characterize existing dental nano-hybrid and micro-hybrid resin composites through comparing and contrasting nano-computed tomography (nano-CT) with micro-CT and high-resolution SEM images. Eight commercially available and widely used dental resin composites, 2 micro-hybrid and 6 nano-hybrid were researched. Cured samples were examined and characterized using nano-CT (resolution 450 nm) and compared with micro-CT images (resolution 2 mu m). Acquired images were reconstructed and image analysis was carried out to determine porosity and pore morphology. A comprehensive comparison of scanning micrograph images unsurprisingly revealed that the nano-CT images displayed greater detail of the ultrastructure of cured dental resin composites. Filler particle diameters and its volumes were lower when measured using nano-CT, porosity being higher where analysed at higher resolution. There were large variations between the examined materials. Fewer voids were found in Tetric EvoCeram and IPS Empress Direct, the smallest pores being found in Universal XTE and Tetric EvoCeram. Nano-CT was successfully used to investigate the morphology of dental resin composites and showed that micro-CT gives a lower porosity and pore size but overestimates filler particle size. There were large discrepancies between the tested composites. Evidence of porosities and pores within a specimen is a critical finding and it might have a detrimental effect on a material's clinical performance

    Avanços e aplicações da microtomografia computadorizada de raios X e do processamento digital de imagens na caracterização de materiais asfálticos

    Get PDF
    Este artigo apresenta os avanços recentes da aplicação da técnica de microtomografia computadorizada de raios X (micro-TC) na caracterização de materiais asfálticos. São discutidas as características de aquisição das imagens para realizar ensaios de micro-TC de concretos asfálticos e matrizes de agregados finos. Um procedimento desenvolvido para realizar o processamento digital das imagens dos materiais asfálticos também é apresentado. As principais conclusões deste artigo são: (1) resoluções espaciais entre 10 µm/pixel e 13 µm/pixel são adequadas para realizar a avaliação da volumetria dos materiais asfálticos; (2) em vez da limiarização, a arquitetura U-Net pode ser utilizada para otimizar o processamento digital de imagens; (3) um elemento de volume representativo considerando 33% do volume total das amostras pode ser adotado para avaliações da volumetria de materiais asfálticos; (4) a volumetria da matriz de agregados finos é dependente da volumetria da mistura asfáltica correspondente

    Using Copper-Doped Mesoporous Bioactive Glass Nanospheres to Impart Anti-Bacterial Properties to Dental Composites

    Full text link
    Experimental dental resin composites containing copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were developed to impart anti-bacterial properties. Increasing amounts of Cu-MBGN (0, 1, 5 and 10 wt%) were added to the BisGMA/TEGDMA resin matrix containing micro- and nano-fillers of inert glass, keeping the resin/filler ratio constant. Surface micromorphology and elemental analysis were performed to evaluate the homogeneous distribution of filler particles. The study investigated the effects of Cu-MBGN on the degree of conversion, polymerization shrinkage, porosity, ion release and anti-bacterial activity on S. mutans and A. naeslundii. Experimental materials containing Cu-MBGN showed a dose-dependent Cu release with an initial burst and a further increase after 28 days. The composite containing 10% Cu-MBGN had the best anti-bacterial effect on S. mutans, as evidenced by the lowest adherence of free-floating bacteria and biofilm formation. In contrast, the 45S5-containing materials had the highest S. mutans adherence. Ca release was highest in the bioactive control containing 15% 45S5, which correlated with the highest number of open porosities on the surface. Polymerization shrinkage was similar for all tested materials, ranging from 3.8 to 4.2%, while the degree of conversion was lower for Cu-MBGN materials. Cu-MBGN composites showed better anti-bacterial properties than composites with 45S5 BG

    The Manufacture of GMP-Grade Bone Marrow Stromal Cells with Validated In Vivo Bone-Forming Potential in an Orthopedic Clinical Center in Brazil

    No full text
    In vitro-expanded bone marrow stromal cells (BMSCs) have long been proposed for the treatment of complex bone-related injuries because of their inherent potential to differentiate into multiple skeletal cell types, modulate inflammatory responses, and support angiogenesis. Although a wide variety of methods have been used to expand BMSCs on a large scale by using good manufacturing practice (GMP), little attention has been paid to whether the expansion procedures indeed allow the maintenance of critical cell characteristics and potency, which are crucial for therapeutic effectiveness. Here, we described standard procedures adopted in our facility for the manufacture of clinical-grade BMSC products with a preserved capacity to generate bone in vivo in compliance with the Brazilian regulatory guidelines for cells intended for use in humans. Bone marrow samples were obtained from trabecular bone. After cell isolation in standard monolayer flasks, BMSC expansion was subsequently performed in two cycles, in 2- and 10-layer cell factories, respectively. The average cell yield per cell factory at passage 1 was of 21.93±12.81×106 cells, while at passage 2, it was of 83.05±114.72×106 cells. All final cellular products were free from contamination with aerobic/anaerobic pathogens, mycoplasma, and bacterial endotoxins. The expanded BMSCs expressed CD73, CD90, CD105, and CD146 and were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages in vitro. Most importantly, nine out of 10 of the cell products formed bone when transplanted in vivo. These validated procedures will serve as the basis for in-house BMSC manufacturing for use in clinical applications in our center

    Void Content Determination of Carbon Fiber Reinforced Polymers: A Comparison between Destructive and Non-Destructive Methods

    No full text
    The properties of composite materials are highly dependent on the fiber and matrix fraction and on the porosity resulting from micro voids. This paper addresses void content characterization and the constituent content of composite materials by resorting to a comparison of destructive and non-destructive methods. The work presents the detailed procedures of two destructive methods, using acid digestion of epoxy resins matrices, and compares their processes. It also presents the results of a non-destructive method, by means of Micro Computed Tomography (MicroCT). The results of both destructive and non-destructive methods are compared, and a recommendation is made based on the application and the type of composite being analyzed. The MicroCT showed better and more consistent results in detecting voids in the material, while the acid digestion tests provided better results about the fiber and matrix percentage. Exported results from the MicroCT scanning with actual locations of voids were used in numerical analysis, to examine the feasibility of using them, whether by developing models that map damage in the proximity of the void, or by developing models that predict the properties of the entire material with respect to the content, shape, and distribution in the material

    Influence of Drug Load on the Printability and Solid-State Properties of 3D-Printed Naproxen-Based Amorphous Solid Dispersion

    Get PDF
    Fused deposition modelling-based 3D printing of pharmaceutical products is facing challenges like brittleness and printability of the drug-loaded hot-melt extruded filament feedstock and stabilization of the solid-state form of the drug in the final product. The aim of this study was to investigate the influence of the drug load on printability and physical stability. The poor glass former naproxen (NAP) was hot-melt extruded with Kollidon® VA 64 at 10–30% w/w drug load. The extrudates (filaments) were characterised using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). It was confirmed that an amorphous solid dispersion was formed. A temperature profile was developed based on the results from TGA, DSC, and DMA and temperatures used for 3D printing were selected from the profile. The 3D-printed tablets were characterised using DSC, X-ray computer microtomography (XµCT), and X-ray powder diffraction (XRPD). From the DSC and XRPD analysis, it was found that the drug in the 3D-printed tablets (20 and 30% NAP) was amorphous and remained amorphous after 23 weeks of storage (room temperature (RT), 37% relative humidity (RH)). This shows that adjusting the drug ratio can modulate the brittleness and improve printability without compromising the physical stability of the amorphous solid dispersion

    Assessing Anatomical Changes in Male Reproductive Organs in Response to Larval Crowding Using Micro-computed Tomography Imaging

    No full text
    Abstract Ecological conditions shape (adaptive) responses at the molecular, anatomical, and behavioral levels. Understanding these responses is key to predict the outcomes of intra- and inter-specific competitions and the evolutionary trajectory of populations. Recent technological advances have enabled large-scale molecular (e.g., RNAseq) and behavioral (e.g., computer vision) studies, but the study of anatomical responses to ecological conditions has lagged behind. Here, we highlight the role of X-ray micro-computed tomography (micro-CT) in generating in vivo and ex vivo 3D imaging of anatomical structures, which can enable insights into adaptive anatomical responses to ecological environments. To demonstrate the application of this method, we manipulated the larval density of Drosophila melanogaster Meigen flies and applied micro-CT to investigate the anatomical responses of the male reproductive organs to varying intraspecific competition levels during development. Our data is suggestive of two classes of anatomical responses which broadly agree with sexual selection theory: increasing larval density led to testes and ejaculatory duct to be overall larger (in volume), while the volume of accessory glands and, to a lesser extent, ejaculatory duct decreased. These two distinct classes of anatomical responses might reflect shared developmental regulation of the structures of the male reproductive system. Overall, we show that micro-CT can be an important tool to advance the study of anatomical (adaptive) responses to ecological environments
    corecore