40 research outputs found

    X-Ray Magnetic Circular Dichroism at the K edge of Mn3GaC

    Full text link
    We theoretically investigate the origin of the x-ray magnetic circular dichroism (XMCD) spectra at the K edges of Mn and Ga in the ferromagnetic phase of Mn3GaC on the basis of an ab initio calculation. Taking account of the spin-orbit interaction in the LDA scheme, we obtain the XMCD spectra in excellent agreement with the recent experiment. We have analyzed the origin of each structure, and thus elucidated the mechanism of inducing the orbital polarization in the p symmetric states. We also discuss a simple sum rule connecting the XMCD spectra with the orbital moment in the p symmetric states.Comment: 5 pages, 5 figures, accepted for publication in Physical Review

    Identification and characterization of mechanistically distinct inducers of gamma-globin transcription

    Get PDF
    Inhibition of HbS polymerization is a major target for therapeutic approaches in sickle cell anemia. Toward this goal, initial efforts at pharmacological elevation of fetal hemoglobin (HbF) has shown therapeutic efficacy. In order to identify well-tolerated, novel agents that induce HbF in patients, we developed a high-throughput screening approach based on induction of gamma-globin gene expression in erythroid cells. We measured gamma-globin transcription in K562 cells transfected with either gamma promoter elements fused with the locus control region hypersensitivity site 2 and luciferase reporter gene (HS2 gamma) or a beta-yeast artificial chromosome in which the luciferase reporter gene was recombined into the gamma-globin coding sequences (gamma YAC). Corresponding pharmacological increases in HbF protein were confirmed in both K562 cells and in human primary erythroid progenitor cells. Approximately 186,000 defined chemicals and fungal extracts were evaluated for their ability to increase gamma gene transcription in either HS2 gamma or gamma YAC models. Eleven distinct classes of compounds were identified, the majority of which were active within 24-48 hr. The short chain hydroxamate-containing class generally exhibited delayed maximal activity, which continued to increase transcription up to 120 hr. The cyclic tetrapeptide OSI-2040 and the hydroxamates were shown to have histone deacetylase inhibitory activity. In primary hematopoietic progenitor cell cultures, OSI-2040 increased HbF by 4.5-fold at a concentration of only 40 nM, comparable to the effects of hydroxyurea at 100 microM. This screening methodology successfully identifies active compounds for further mec

    Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres

    Get PDF
    Abstract: Sample return from a main-belt asteroid has not yet been attempted, but appears technologically feasible. While the cost implications are significant, the scientific case for such a mission appears overwhelming. As suggested by the “Grand Tack” model, the structure of the main belt was likely forged during the earliest stages of Solar System evolution in response to migration of the giant planets. Returning samples from the main belt has the potential to test such planet migration models and the related geochemical and isotopic concept of a bimodal Solar System. Isotopic studies demonstrate distinct compositional differences between samples believed to be derived from the outer Solar System (CC or carbonaceous chondrite group) and those that are thought to be derived from the inner Solar System (NC or non-carbonaceous group). These two groups are separated on relevant isotopic variation diagrams by a clear compositional gap. The interface between these two regions appears to be broadly coincident with the present location of the asteroid belt, which contains material derived from both groups. The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what can be learned from a sample-return mission to an asteroid, even with a very small amount of sample. One scenario for main-belt sample return involves a spacecraft launching a projectile that strikes an object and flying through the debris cloud, which would potentially allow multiple bodies to be sampled if a number of projectiles are used on different asteroids. Another scenario is the more traditional method of landing on an asteroid to obtain the sample. A significant range of main-belt asteroids are available as targets for a sample-return mission and such a mission would represent a first step in mineralogically and isotopically mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does not necessarily have to return material from both the NC and CC groups to viably test the bimodal Solar System paradigm, as material from the NC group is already abundantly available for study. Instead, there is overwhelming evidence that we have a very incomplete suite of CC-related samples. Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet (1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not have any meteorites that closely resemble material that would be brought back from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return mission from Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable of providing as much insight into the early Solar System as Ceres. Such a mission should be given the highest priority by the international scientific community

    The Physics of the B Factories

    Get PDF

    Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts.

    No full text
    Erythropoietin (Epo) is required for the production of mature red blood cells. The requirement for Epo and its receptor (EpoR) for normal heart development and the response of vascular endothelium and cells of neural origin to Epo provide evidence that the function of Epo as a growth factor or cytokine to protect cells from apoptosis extends beyond the hematopoietic lineage. We now report that the EpoR is expressed on myoblasts and can mediate a biological response of these cells to treatment with Epo. Primary murine satellite cells and myoblast C2C12 cells, both of which express endogenous EpoR, exhibit a proliferative response to Epo and a marked decrease in terminal differentiation to form myotubes. We also observed that Epo stimulation activates Jak2/Stat5 signal transduction and increases cytoplasmic calcium, which is dependent on tyrosine phosphorylation. In erythroid progenitor cells, Epo stimulates induction of transcription factor GATA-1 and EpoR; in C2C12 cells, GATA-3 and EpoR expression are induced. The decrease in differentiation of C2C12 cells is concomitant with an increase in Myf-5 and MyoD expression and inhibition of myogenin induction during differentiation, altering the pattern of expression of the MyoD family of transcription factors during muscle differentiation. These data suggest that, rather than acting in an instructive or specific mode for differentiation, Epo can stimulate proliferation of myoblasts to expand the progenitor population during differentiation and may have a potential role in muscle development or repair
    corecore