91 research outputs found
Immunological evaluation of peptide vaccination for cancer patients with the HLA-A26 allele
To develop a peptide vaccine for cancer patients with the HLA-A26 allele, which is a minor population worldwide, we investigated the immunological responses of HLA-A26+ ⁄ A26+ cancer patients to four different CTL epitope peptides under personalized peptide vaccine regimens. In personalized peptide vaccine regimens, two to four peptides showing positive peptide-specific IgG responses in pre-vaccination plasma were selected from the four peptide candidates applicable for HLA-A26+ ⁄ A26+ cancer patients and administered s.c. Peptide-specific CTL and IgG responses along with cytokine levels were measured before and after vaccination. Cell surface markers in PBMCs and plasma cytokine levels were also measured. In this study, 21 advanced cancer patients, including seven lung, three breast, two pancreas, and two colon cancer patients, were enrolled. Their HLAA26 genotypes were HLA-A26:01 (n = 24), HLA-A26:03 (n = 10), and HLA-A26:02 (n = 8). One, 14, and 6 patients received two, three, and four peptides, respectively. Grade 1 or 2 skin reactions at the injection sites were observed in the majority of patients, but no severe adverse events related to the vaccination were observed. Peptide-specific CTL responses were augmented in 39% or 22% of patients after one or two cycles of vaccination, respectively. Notably, peptide-specific IgG were augmented in 63% or 100% of patients after one or two cycles of vaccination, respectively. Personalized peptide vaccines with these four CTL epitope peptides could be feasible for HLA-A26+ advanced cancer patients because of their safety and higher rates of immunological responses.This study was supported in part by the Japan Agency for Medical Research and development, AMED, a research program of the Regional Innovation Cluster Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a grant from the Sendai Kousei Hospital
Impact of maximum Standardized Uptake Value (SUVmax) evaluated by 18-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report
<p>Abstract</p> <p>Background</p> <p>In this era of molecular targeting therapy when various systematic treatments can be selected, prognostic biomarkers are required for the purpose of risk-directed therapy selection. Numerous reports of various malignancies have revealed that 18-Fluoro-2-deoxy-D-glucose (<sup>18</sup>F-FDG) accumulation, as evaluated by positron emission tomography, can be used to predict the prognosis of patients. The purpose of this study was to evaluate the impact of the maximum standardized uptake value (SUVmax) from 18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (<sup>18</sup>F-FDG PET/CT) on survival for patients with advanced renal cell carcinoma (RCC).</p> <p>Methods</p> <p>A total of 26 patients with advanced or metastatic RCC were enrolled in this study. The FDG uptake of all RCC lesions diagnosed by conventional CT was evaluated by <sup>18</sup>F-FDG PET/CT. The impact of SUVmax on patient survival was analyzed prospectively.</p> <p>Results</p> <p>FDG uptake was detected in 230 of 243 lesions (94.7%) excluding lung or liver metastases with diameters of less than 1 cm. The SUVmax of 26 patients ranged between 1.4 and 16.6 (mean 8.8 ± 4.0). The patients with RCC tumors showing high SUVmax demonstrated poor prognosis (<it>P </it>= 0.005 hazard ratio 1.326, 95% CI 1.089-1.614). The survival between patients with SUVmax equal to the mean of SUVmax, 8.8 or more and patients with SUVmax less than 8.8 were statistically different (<it>P </it>= 0.0012). This is the first report to evaluate the impact of SUVmax on advanced RCC patient survival. However, the number of patients and the follow-up period were still not extensive enough to settle this important question conclusively.</p> <p>Conclusions</p> <p>The survival of patients with advanced RCC can be predicted by evaluating their SUVmax using <sup>18</sup>F-FDG-PET/CT. <sup>18</sup>F-FDG-PET/CT has potency as an "imaging biomarker" to provide helpful information for the clinical decision-making.</p
Current Performance and On-Going Improvements of the 8.2 m Subaru Telescope
An overview of the current status of the 8.2 m Subaru Telescope constructed
and operated at Mauna Kea, Hawaii, by the National Astronomical Observatory of
Japan is presented. The basic design concept and the verified performance of
the telescope system are described. Also given are the status of the instrument
package offered to the astronomical community, the status of operation, and
some of the future plans. The status of the telescope reported in a number of
SPIE papers as of the summer of 2002 are incorporated with some updates
included as of 2004 February. However, readers are encouraged to check the most
updated status of the telescope through the home page,
http://subarutelescope.org/index.html, and/or the direct contact with the
observatory staff.Comment: 18 pages (17 pages in published version), 29 figures (GIF format),
This is the version before the galley proo
Impact of single nucleotide polymorphism on short stature and reduced tongue pressure among community-dwelling elderly Japanese participants: a cross-sectional study
Background: Asian-specific single nucleotide polymorphism (SNPs) (rs3782886) is reported to be associated with myocardial infarction; sarcopenia is reported to be associated with coronary subclinical atherosclerosis. On the other hand, short stature has been revealed as an independent risk factor for cardiovascular disease. However, no studies have reported on the association between sarcopenia and short stature nor on the impact of rs3782886 on this association. Methods: Since reduced maximum voluntary tongue pressure against the palate (MTP) reflects one aspect of sarcopenia, we conducted a cross-sectional study of 537 community-dwelling elderly Japanese participants aged 60?89 years who had participated in a general health checkup in 2015. Short stature was defined as values at or under the 25th percentile, and reduced MTP was defined as the lowest tertile of the study population (<158.0 cm and <26.5 kPa for men, <145.0 cm and <24.1 kPa for women). Results: Independent of classical cardiovascular risk factors, short stature was revealed to be positively associated with reduced MTP. The adjusted-odds ratio (OR) and 95% confidence interval (CI) of reduced MTP for short stature was 1.87 (1.19, 2.94). We also found that independent of known cardiovascular risk factors, with the non-minor homo of rs3782886 taken as the reference group, the adjusted OR and 95% CI for short stature and reduced MTP of the minor homo allele were 3.06 (1.23, 7.63) and 3.26 (1.33, 8.03), respectively. Conclusion: Short stature is independently associated with reduced MTP, with Asian-specific SNPs possibly playing an important role in this association
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
- …